
HAL Id: inria-00103749
https://inria.hal.science/inria-00103749

Submitted on 5 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Personalization of an Online Handwriting Recognition
System

Patrick Haluptzok, Michael Revow, Ahmad Abdulkader

To cite this version:
Patrick Haluptzok, Michael Revow, Ahmad Abdulkader. Personalization of an Online Handwriting
Recognition System. Tenth International Workshop on Frontiers in Handwriting Recognition, Uni-
versité de Rennes 1, Oct 2006, La Baule (France). �inria-00103749�

https://inria.hal.science/inria-00103749
https://hal.archives-ouvertes.fr

Personalization of an Online Handwriting Recognition System

Patrick Haluptzok Michael Revow Ahmad Abdulkader

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

patrickh@microsoft.com

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

mrevow@microsoft.com

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

ahmadab@microsoft.com

Abstract

This paper proposes and compares some approaches

for personalizing a handwriting recognizer to a specific

user’s handwriting style. A typical PocketPC or

TabletPC is used by one person exclusively. The

handwriting recognizer on such a device can customize

its recognition to the specific writing style of the user.

This paper presents the results of different

personalization approaches for a neural network based

classifier, showing how using data specific to the user

can dramatically improve recognition accuracy.

Keywords: Personalization, Handwriting Recognition,

Neural Network.

1. Introduction

A number of devices such as a TabletPC or PDA are

used in a mode where the primary input is through a pen.

Handwriting recognition can be used on such devices to

allow the user a natural method for entering characters

when a keyboard is not available. Typically the

graphical UI provides an area for the user to write

characters, and the ink written is converted into

characters to provide input to the device as a keyboard

would. An example of a typical UI is shown in Figure 1.

Figure 1. A typical input pad layout is shown. This
UI is used on a keyboard-less device to provide a
natural text input mechanism. The user writes in
the input area with a pen and a handwriting
recognizer converts the ink into text.

An ongoing challenge in using such a text input

system on a device like the TabletPC is the error rate a

user encounters from handwriting recognition. When a

user first starts using a TabletPC they encounter a “walk-

up” error rate. The handwriting recognizer has been

trained to perform optimally over all writing styles that

appear in the training data for a particular language. An

individual typically shows much less variation in their

writing style for each letter than the variation found over

the entire training set of data across all users. In some

cases a specific user may have a unique writing style that

doesn’t well match any of the writing styles the

recognizer was trained for. Personalization of the

handwriting recognizer to a specific user’s writing style

offers an ability to reduce the errors that user experiences

which improves their overall satisfaction using the

device. Personalization is defined in the context of this

paper to mean taking some ink samples from a specific

writer and then re-training or tuning the handwriting

recognizer to that user’s specific style.

This paper describes a method for personalizing a

neural network based handwriting recognizer. First an

overview of the architecture, features, and training

method used in building the baseline recognition system

is presented. Next a description of the personalization

method is presented and the experimental results are

shown.

2. Previous Work

In prior work some handwriting recognizers based on

generative classifiers were built that supported

personalization per user. For example in a nearest

neighbor based prototype matching system new

templates are added to the recognition database

corresponding to the writer’s style, and conflicting

prototypes are removed. In a parametric model an

updated estimate of the model parameters can be made to

be better fit the user’s data. For example when using a

mixture of Gaussians to represent each character’s

distribution in feature space, an updated set of means and

covariance matrices can be computed based on the user’s

personalization samples as described in [1]. Many of

these previous approaches were focused on generative

models where each character’s distribution was

represented in feature space. Our work focuses on

personalizing a discriminative model. We have found in

our work that discriminative models give the best

accuracy on the handwriting recognition problem space

when trained with large amounts of labeled data; other

researchers have reported similar results [2].

3. Baseline Recognition System

3.1. Recognizer Structure

The character recognition system used for these

experiments is based on a standard feed-forward neural

network as shown in Figure 2.

Figure 2. The baseline recognition architecture is a
simple feed-forward neural network. The ink is
featurized and normalized into 64 feature vector
which is used as input to the neural network. The
output layer of the neural network has 99 nodes,
one for each character supported. The activation of
each output node corresponds to the probability the
ink is the character corresponding to that output
node.

3.1.1. Output Layer

The output layer consists of 99 nodes; each node

corresponds to a supported character. The output layer is

computed via soft-max; each output node’s activation is

computed as shown in Equations 1 and 2, where j ranges

over the M nodes in the previous layer, and wkj

corresponds to the weight connecting node j to node k.

∑
=

∗=

M

j

jkjk ywa
0

 (1)

∑
=

' ')exp(

)exp(

k k

k

k
a

a
y (2)

3.1.2. Hidden Layer

The hidden layer was set to 150 for these

experiments. A larger hidden layer gave generally better

accuracy results at the expense of a larger and slower

system. The hidden layer is made of sigmoid nodes;

each hidden layer node’s activation is computed by the

sigmoid function as shown in Equation 3, with ak

computed as shown in Equation 1.

)exp(1

1

k

k
a

y
−+

= (3)

3.1.3. Feature Extraction

The input layer consists of 64 features computed

from the character ink. 56 of the features are the

coefficients for Chebyshev polynomials that approximate

the stroke shapes and contours of the ink, a featurization

method described in [3]. The remaining 8 features are

computed from the bounding box of the ink relative to

the baseline, and other properties of the ink such as

stroke count and overall curvature measures. Across the

train set the mean and variance for each feature was

computed and the features in the train and test sets were

normalized by this so each feature input to the network

would have zero mean and unit variance.

To perform character recognition the ink for a

character is featurized and normalized into a 64 entry

vector. This vector is used as the input to the neural

network. The hidden layer and output layer activations

are computed via standard feed forward propagation and

the ink was classified as the character with the maximum

output activation.

3.2. Training Methodology

The recognition system is trained optimizing a cross-

entropy error function as shown in Equation 4. As

discussed in [4] optimizing the cross entropy error

function with a soft-max output layer will lead to the

output nodes converging to probabilities, enabling the

outputs to be combined in a principled way with a

language model if one is available. Cross-Entropy

optimization was found to consistently converge to an

error rate that was 8% lower than Mean Square Error

optimization for our baseline recognition system, similar

to results reported by Simard et al [5]. In equation 4 n

represents the number of training samples, c represents

the number of outputs, tkp is the target value for the k
th

output when p
th

 patterns presented, and ykp is actual

output value from the neural network.

∑∑
= =

=

n

p

c

k kp

kp

kp
t

y
tE

1 1

ln (4)

The results of training the baseline recognition

system are shown in Figure 3. The effects of over

training can be seen, as the error rate on the test set

initially falls to a minimum and then slowly starts to rise

as the network is over-trained. This demonstrates the

importance of using a method to prevent over-training

such as using a validation set to stop training at an

optimal generalization point.

This graph also shows the impact of using a larger

hidden layer; the train and test error rates for the 600

node hidden unit layer are significantly more accurate

than the 150 node hidden layer. This shows the trade-off

that can be made between size and accuracy. The

network weights were initialized randomly in the uniform

range of [-0.01, 0.01]. Gradient descent over the weights

with a learn rate of 0.001 and a momentum of 0.7 was

used to minimize the error rate.

Baseline Recognizer's Error Rate

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 50000 100000 150000 200000 250000

Presentations (x100)

E
rr

o
r

R
a

te Test-600

Train-600

Test-150

Train-150

Figure 3. This graph shows the error rates of the

neural network on the train and test sets during training

of the baseline recognition system. The x-axis shows

how many times samples had been presented during

training. An epoch corresponds to 192,002

presentations, a complete pass through all the train data.

All graphs are shown using presentations instead of

epochs so that error rates for different sized training sets

are comparable in terms of the amount of training time

taken.

3.3. Baseline Data Set and Weight Set

For our experiments the net was trained using a

training data set of 192,002 samples from 225 different

users. A validation set of 37,984 samples from 34

different users was used during training of the baseline

recognizer to determine when to stop training. The test

set is 58,966 samples gathered from another 21 different

users. There are approximately 28 samples per character

from each user in the test set.

The neural network had the minimum error rate on

the validation set after training for 10,621,500

presentations. That was the baseline weight set used for

the incremental personalization experiments. This

baseline weight set corresponded to a 10% error rate on

the test set. As can be seen in Figure 3, the validation set

minimum error rate was in the correct range where the

minimum error rate on the test set occurred, and was

close to the 9.78% minimum error rate achieved on the

test set during training.

These experiments were done on US English with

single character data. Training was done uniformly

across the characters, where ink for each character is

presented an equal number of times. Test error rates

were computed for each user by taking the raw count of

the characters incorrectly classified in the test set and

dividing that by the total number of characters for that

user. The average error rates weighted each user equally.

4. Personalization

4.1. Overview

The approaches presented here to personalize the

handwriting recognizer are based on training the neural

network with a user’s ink data. The user can explicitly

enter ink data for each character in an enrollment

application or the system can implicitly collect ink from

the user that has been written and corrected in their daily

use of the device. Considerable work and care needs to

be taken when using implicit data for training. In the

personalization approach presented here one needs to

balance the character counts of the data when training the

neural network; possibly augmenting the implicit data

with training data from other users for under-represented

characters. Since labels aren’t available for implicit data,

the recognizer’s own recognition result is used as the

label for any ink data that isn’t corrected. The system is

designed so that when the user corrects any recognition

errors the corrected text will be used as the label for the

implicit ink data. But since not all misrecognition errors

are corrected, using implicit data requires handling

misrecognitions and the full details are beyond the scope

of this paper. Our results presented here are based on

explicit data where the user has written every character

the same number of times for personalization, although

similar results can be achieved using data collected

implicitly.

4.2. Scratch Approach

The first approach we tried was training a neural

network from scratch on just that user’s ink data,

following the same method used to train the baseline

recognition system. We evaluated the accuracy achieved

using 1, 2, 5, and 10 samples of ink per character when

training the neural network based recognizer. This

showed that good accuracy results for a user can be

achieved with relatively few samples per character. For

users in a language that a localized recognizer isn’t

available for their character set, this would offer the

ability for a user to completely train the recognizer on

their writing style from scratch and have recognition

accuracy better than the “walk-up” accuracy achieved in

the current English recognizer.

4.3. Incremental Approach

The second approach we tried was training the neural

network on the user’s ink data, but starting from the

neural network fully trained on the train set data. This

showed the user could achieve substantial accuracy

improvements by providing additional ink data. We

evaluated the accuracy using 1, 2, 5, and 10 samples of

ink per character. The results showed that the neural

network could find a substantially better local minimum

starting from a fully trained neural network than starting

from scratch. Clearly the user achieved much better

accuracy results starting from a fully trained neural

network.

4.4. Personalization Data Set

In these experiments each of the 21 users in the test

set also provided a separate personalization training set.

The training set had exactly 10 samples per character

which was used to train on. For each of the 21 users

some portion of the data (1, 2, 5, or 10 characters) from

their personalization training data was used to

personalize the recognizer. The impact of that change

was then computed using the separate personalization

test set of each user.

5. Experimental Results

For each of the 21 users in the test set the baseline

recognizer was personalized using the “Scratch

Approach” and the “Incremental Approach”. The test set

was broken into 21 different subsets corresponding to

each of the users. After personalization on just one

user’s train data the error rate on that user’s test data was

measured. This was done independently for each of the

21 users in the test set.

5.1. Scratch Results per User

In Figure 4 the error rate for each user on their test

set is shown as a function of the number of presentations

the neural network has been trained on using the scratch

training approach. The number of presentations is

plotted in logarithmic scale to better show the rate at

which the error rate drops. Starting from scratch the

error rate during training starts at 99%, as expected when

the weights are randomly initialized.

Scratch Personalization at 10 Samples

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000 100000

Presentations (x100)

E
rr

o
r

R
a

te

User1

User2

User3

User4

User5

User6

User7

User8

User9

User10

User11

User12

User13

User14

User15

User16

User17

User18

User19

User20

User21

Avg

Figure 4. Scratch error rate per user when trained on

10 samples per character, as a function of presentations

made during training.

5.2. Average Scratch Results

In Figure 5 the average error rate measured on the

test set is shown using scratch personalization. The

average error rate is computed by averaging the

personalized error rate from each of the 21 users in the

test set.

Scratch Personalization Average Error Rate

0

0.2

0.4

0.6

0.8

1

1.2

1 10 100 1000 10000 100000

Presentations (x100)

E
rr

o
r

R
a

te 1 Sample

2 Samples

5 Samples

10 Samples

Figure 5. The average error rate plotted as a function

of training time. Each line shows the average error rate

when trained from scratch with 1, 2, 5, or 10 samples per

character.

5.3. Incremental Results per User

In Figure 6 the error rate for each user on their test

set is shown as a function of the number of presentations

the neural network has been trained on using the

incremental training approach. As expected when

starting from a weight set that was trained on a large set

of users the per user error rate starts around 10% and

reduces further as more samples from the user’s train

data are seen.

Incremental Personalization at 10 Samples

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

1 10 100 1000 10000 100000

Presentations (x100)

E
rr

o
r

R
a

te

User1

User2

User3

User4

User5

User6

User7

User8

User9

User10

User11

User12

User13

User14

User15

User16

User17

User18

User19

User20

User21

Ave

Figure 6. Incremental error rate per user when

trained on 10 samples per character, as a function of

presentations made during training.

5.4. Average Incremental Results

In Figure 7 the average error rate measured on the

test set is shown using incremental personalization. Just

as in the original training of the baseline recognizer

overtraining is clearly seen if the training runs to long.

Using cross-validation the overall optimal number of

times to present the samples for different training set

sample counts was determined. Table 2 presents those

results.

Incremental Personalization Average Error Rate

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 10 100 1000 10000 100000

Presentaions (x100)

E
rr

o
r

R
a

te Ave 1

Ave 2

Ave 5

Ave 10

Figure 7. The average error rate plotted as a function

of samples presented during training. Each line shows

the average error rate when trained incrementally with 1,

2, 5 or 10 samples per character.

6. Discussion

The experiments show that a significant reduction in

the average user error rate is possible by training on

additional samples from the user.

In Table 1 it can be seen that the scratch

personalization method reduces the error rate by 15%

when 10 samples per character are provided. However

with just 1, 2 or 5 samples per character the neural

network converges to a higher error rate. Additional

experiments showed that at 8 samples per character the

scratch personalization method yielded an accuracy

equivalent to the baseline recognizer.

Table 1. This shows the maximum relative
improvement seen from scratch personalization
compared to the baseline recognition error rate
10%.

Number of

samples per

character

Minimum

Error Rate

Relative

Improvement

1 37.51% -275.1%

2 22.35% -123.5%

5 12.48% -24.8%

10 8.50% 15.0%

In Table 2 the incremental personalization method

shows clear wins over the baseline recognizer at all

sample counts. Interestingly for best results the number

of presentations made to personalize the neural network

increases sub-linearly, as shown by the “Samples

Presented” column in Table 2. Or looking at in terms of

epochs, the more data per character we have reduces the

total number of complete passes over the data to obtain

the best results.

Table 2. This shows the relative improvement seen
from incremental personalization compared to the
baseline recognition error rate of 10%. The
“Samples Presented” column shows the optimal
length of time to train the recognizer on the
additional data for that number of samples per
character.

Number of

samples

per

character

Minimum

Error Rate

Relative

Improvement

Samples

Presented

(x100)

Epochs

1 7.65% 23.47% 600 600

2 6.58% 34.17% 700 350

5 5.40% 45.99% 800 160

10 4.62% 53.76% 2000 200

7. Conclusions

Personalization can provide a substantial

improvement in recognition accuracy for a writer. For

users in languages where baseline recognizers are not

produced we have shown that with approximately 8

samples the handwriting recognition system can be

trained on the user’s data to produce a recognizer with

better accuracy than the “walk-up” accuracy of a fully

trained but non-personalized recognizer. In addition we

have shown that the fully trained recognizer can have its

accuracy improved dramatically, and that starting with a

fully trained neural network on a large set of users results

in superior accuracy for the personalized recognizer over

starting from scratch. Personalization clearly provides a

dramatic improvement in the accuracy for a user and

should be deployed in commercial systems to improve

user satisfaction.

References

[1] R. O. Duda, P. E. Hart, D. G. Stork, Pattern
Classification (2nd Edition), John Wiley & Sons, (2001).

[2] Andrew Y. Ng, Michael I. Jordan. “On Discriminative vs.
Generative classifiers: A comparison of logistic
regression and Naive Bayes”. NIPS 2002

[3] Adcock, James L. “Method and system for modeling
handwriting using polynomials as a function of time”, US
Patent 5,764,797, granted June 9, 1998.

[4] C. M. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, (1995).

[5] P. Simard, D. Steinkraus, and J. Platt. “Best practice for
convolutional neural networks applied to visual
document analysis”, International Conference on
Document Analysis and Recognition (IDCRAR), pages
958-962, 2003.

