N

N

parXXL: A Fine Grained Development Environment on
Coarse Grained Architectures
Jens Gustedt, Stéphane Vialle, Amelia de Vivo

» To cite this version:

Jens Gustedt, Stéphane Vialle, Amelia de Vivo. parXXL: A Fine Grained Development Environment
on Coarse Grained Architectures. Workshop on State-of-the-Art in Scientific and Parallel Computing
- PARA’06, Jun 2006, Umea/Sweden, Sweden. inria-00103772

HAL 1d: inria-00103772
https://inria.hal.science/inria-00103772
Submitted on 5 Oct 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00103772
https://hal.archives-ouvertes.fr

parXXL: A Fine Grained Development Environment on
Coarse Grained Architectures

Jens Gusted} Stephane Viallé, and Amelia De Vivd

'INRIA Lorraine & LORIA, 2SUPELEC, 3Universitx degli Studi della Basilicata
France France Italy

Abstract. We present a new integrated environment for cellular computing and othe
fine grained applications. It is based upon previous developmentgrong cellular
computing environments (the ParCeL family) and coarse grained algwri(the SS-
CRAP toolbox). It is aimed to be portable and efficient, and at the same tioféetoa
comfortable abstraction for the developer of fine grained progranfisstAcampaign of
benchmarks shows promising results on clusters and mainframes.

1 Project overview

Nowadays, designers and developers of algorithms and codarfe scale applications are
often confronted with a paradoxal situation: their moawjliand thinking isfine-grained
speakinge.g.of atoms, cells, items, protein bases and alike, whereagmanbmputing ar-
chitectures areoarse-grainedroviding few processors (up to several thousasdi)?) to
potentially huge amount of data (thousands of billions déby: 10'2) and linking a substan-
tial amount of resources (memory in particular) to each gssor. Only few tools (for both,
modelling and implementation) are provided to close thjsigaxpectation, competence and
education.

On the modelling side, Valiant's seminal paper on the BS®,[$k has triggered a lot
of work on different sides (modelling, algorithms, implemegions and experiments) that
showed very interesting results on narrowing the gap bety@eone hand, fine grained data
structures and algorithms and, on the other, coarse graibitectures. But when coming to
real life code developers are usually left alone with thassical” interfaces, even when they
implement with a BSP-like model in mind. In particular, irepienting dynamic data struc-
tures such asellular networksefficiently on a large scale often constitutes an insurmatnist
hurdle for real life applications.

The parXXL development environment is split into severad/videntified layers which
historicaly come from two different project sources, SSERand ParCel-6. Its software ar-
chitecture is introduced on Fig. 1, and demonstrates tliecfpgthese two main parts into the
different layers. The (former) SSCRAP part introduces ladl hecessary parts to allow for
an efficient programming in coarse grained environmentsrfaces for the C++ program-
ming language, the POSIX system calls, tools for benchmgrkd memory abstraction layer
and the runtime communication and control. The (formerCear6 part introduces eel-
lular development environment and a set of predefined and optihtiegk networks. These
programming models of SSCRAP and ParCel-6 are detailectindRt sections.

2 SSCRAP programming model

SSCRAP is a programming environment that is based on ansatenf the BSP program-
ming model [1], called PRO [2]. It has proven to be quite effitifor a variety of algorithms
and platforms, see [3]. Its main features what concern tpepare:

par::cel I net| Cellular networking ParCel-6
par::cell Cellular programming environment aret-
par::cntrl Runtime communication and contrdl
par::mem Memory abstraction and mapping

par:: bench Benchmarking tools

par::sys System interfaces (POSIX) SSCRAP
par::cpp C++ wrappers and utilities

Fig. 1. parXXL software architecture

Supersteps with relaxed synchronization: Originally, BSP was designed with strong syn-
chronization between the supersteps. PRO (and thus SSC&IR)s a process to re-
sume computation as soon as it receives all necessary datsefoext superstep. The
par::cntrl layer (see Fig.1) implements these features in parXXL.

A well identified range of applicability: SSCRAP is clearly designed and optimized for
coarse grainedarchitecturesi.e. where there is substantially more memory than there
are processors.

Comfortable encapsulation of data: The work horse of SSCRAP is a data tymhgnk
in the par : : nemlayer) that encapsulates data situated on different stggach as
memory and files which then can be mapped efficiently into thdress space of the
processes. Thereby SSCRAP can efficiently handle hugeelgtarger than the address
space) without imposing complex maintenance operatiotisetprogrammer.

Portability: SSCRAP is uniquely based on normalized system interfapaas.(: sys), most
important are POSIX file systems, POSIX threads and MPI fonroanication in dis-
tributed environments. Therefore it should run without ifiodtion on all systems that
implement the corresponding POSIX system calls and/origeos decent MPI imple-
mentation.

Performance: This portability isnot obtained by trading for efficiency. In the contrary, we
provide two run-times, one for shared memory architect(ite®ads) and one for dis-
tributed computing (MPI). These are designed to get thedngstf their respective con-
text: avoiding unnecessary copies on shared memory anaclaf@oblems when dis-
tributed. All this is achieved by only linking against thespective library, no recompila-
tion is necessary.

3 ParCel-6 programming model

Thepar: : cel | level of parXXL architecture (see Fig. 1) implements theG#dr-6 pro-
gramming model [4]. Itis based a@ellsdistributed on different processors, and isatended
cellular moded

A sequential program with cellular operations: ParCelL-6 developers design and imple-
ment some cell behavior functions, and a sequential progoaimstall and to control
a parallel cellular net. This mixed programming model isygasuse and facilitatesel-
lular serversdesigns: a classical client can connect to the sequentigkam, that runs
cellular computations.

A dynamic cellular network: Starting from an empty network of cells, the sequential pro-
gram creates cells on all available processors. Each cebuhandividual set of parame-
ters, and the first action of these cells is usually to coneach other to create a cellular

network. This network may evolve at any point of the exeaquticells and connexions
can be created or removed.

Six cell components: A cell is composed of (1) a uniqueell registration (2) parameters
(3) private variables (4) somecell behavior functiong(5) a unique multi valuedutput
channe] and (6) several multi valueidput channelsThe first is imposed by ParCelL-6
mechanisms, the others are defined by the developer.

A cyclic/BSP execution of the cell net:A ParCelL-6 cycle consists of three steps: computa-
tion, net evolution and communication. Each cell is acédaince during the computation
step, where it sequentially reads its inputs, updates isubuand issues some cell net
evolution requestsThese requests define, kill, connect or disconnect sons aall are
executed during the net evolution step.

Three modes of cellular communications:Cells need to be explicitly connected to com-
municate, and a cell output can be connected to an unlimitetber of cell inputs. Dur-
ing the communication stepuffered outputsre copied to their connected cell inputs.
Their propagation is fast and is adapted to synchronous fimieed computation (cell
inputs do not change during the computation steps). Theagatpn of adirect outputto
a connected cell input is triggered each timefieshcommand is executed for it. This
mechanism has a large overhead but is required by some aspiocis fine grained com-
putations [4].Hybrid outputsare an attempt to get both fast and asynchronous cellular
computations: they propagate their value one time per ctatipa step and per processor
(cells on different processors can read different valuegsdwne computation step).

Global communications with the cell net: Someglobal cell nhet communications mecha-
nisms allow the sequential program to send input data to¢hs @¢ike camera images)
and to obtain the cell outputs (computation results).

4 Optimized cell network library

Thepar: : cel | net library (see Fig. 1) is a collection aiell network installersapplica-
tion code can easily deploy a cell network just usingrestaller object. Eaclinstaller has to
be set with the application cell behavior functions, thé patameter and cell variable types,
and the cell network size. Then, it installs the cells andrtharameters, and connects the
cells according to a predefined communication scheme. Peglots are optimized: cells are
load balanced among the processors but neighbor cellsstedléa on a same processor, and
cell net installation is split in small steps to limit the mem required by the deployment op-
erations. Thepar : : cel | net library currently includes 3D cubic and 2D matrix networks
installers

5 Application and performance examples

To validate the scalability of parXXL we have designed andezimented a 3D Jacobi re-
laxation on acubeof cells. The cells are created with one output value, and¢@neected to
their neighbor cells: up to six neighbors for a cell inside tube. Then, the parXXL program
enters a long loop of cellular execution cycles. Cells iasfte cube update their output value
with the average of their neighbor output values, whilesoetl the cube boarder maintain their
output value unchanged. To deploy large cubes of cells, we tsed thear : : cel | net
library, that installs optimized cell networks and requsreall datastructures for the cell cre-
ation management.

o T T T T 6 procs] Eig. 2. illustrates the ex-
5421 procs 1 ecution time measured per
rocs ------
48 Brocs g] cell ar_ld per cycle of our 3D
; —t 64 procs Jacobi relaxation algorithm.
107 + 96 procs E f .
9 128 procs - -] The platform is the Grid-
S T 192 procs & 4 eXplorercluster composed of
S B-B-3.4 g 310procs =~] . .
@ bi-processor machines. We
*o . | have computed problems up
R to 400 million cells and used
108 k L up to 310 processors in total.
b] We can see this parXXL ap-

S0 e - plication scaleswell with the
10 10 number of processors: (1) the
cells cell execution timalecreases
Fig. 2. Benchmarks on Grid-eXplorer cluster: up to 400 mikubstantially when running a
lion cells using up to 310 processors fixed number of cells on an
increasing number of proces-
sors, and (2) theell execution timeemains constant or continues to decrease when running
more cells on more processors (see the curvesX®r192 and310 processors).
Moreover, first experiments on a SGI-Origin3000 have shoanXKgL environment also
runs and achieves speedup on a mainframe with a proprietAity A architecture.

6 Conclusion and perspectives

Main parts of parXXL architecture are implemented and ofp@mal, and first experiments
show parXXL architecture scales up to 310 processors onga léme grained application.
Next development steps will consist in implementing ghebal communication mechanisms
between the cell net and the sequential program, and tordesid implement an efficient
hybrid cell communication mod&lext experiment will be run on a larger number of pro-
cessors of the Grid-eXplorer machine, and on a Grid of ctastsing Grid5000 (the French
experimental Grid).

From an application point of view, we aim to rufn® cell simulations of optical phenom-
enain 2006, in collaboration with researchers from LMOR®®tatory.

References

1. Valiant, L.: A bridging model for parallel computation. Communicatiofithe ACM 33(8) (1990)

2. Gebremedhin, A., Garin Lassous, |., Gustedt, J., Telle, J.: PRO: a model for parakeluree-
optimal computation. In: 16th Annual International Symposium on HigtioP®ance Computing
Systems and Applications. (2002)

3. Essddi, M., Gustedt, J.: An experimental validation of the PRO model forlfgrand distributed
computation. In: 14th Euromicro Conference on Parallel, Distributed\eaork based Processing.
(2006)

4. Ménard, O., Vialle, S., Frezza-Buet, H.: Making cortically-inspiredsseimotor control realistic for
robotics: Design of an extended parallel cellular programming model$nternational Conference
on Advances in Intelligent Systems - Theory and Applications. (2004)

