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Abstract 
 

A new paradigm, which models the relationships 
between handwriting and topic categories (denoted as 
‘concepts’), in the context of medical forms, is 
presented. The ultimate goals are (i) the recognition of 
medical handwriting, and (ii) the use of such 
information for a medical form search engine. Medical 
forms have diverse, complex and large lexicons 
consisting of English, Medical and Pharmacology 
corpus. This technique shows that a handwriting 
recognition engine, with just a few recognized 
characters, can be used to represent a medical concept. 
This allows (i) a reduced lexicon to be constructed, 
thereby improving the performance of handwriting 
recognition engines [6][21], and (ii) unseen PCR forms 
to be tagged with a concept and later searched. Both 
practical and theoretical numbers are reported. This 
research builds the notion of a ‘computational semantic 
lexicon’ which was vaguely introduced in our IWFHR 
2002 paper [15] and incorporates other research in the 
area of call-routing [2][3]. 
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1. Introduction 
The New York State Pre-Hospital Care Report 

(PCR)[20], has been obtained under an agreement with 
the Western Regional Emergency Medical Services 
(WREMS) division of the New York State (NYS) 
Department of Health. The recognition, lexicon 
reduction, and information retrieval algorithms and 
experiments, presented in this research, use these PCR 
documents (see Figure 1) [13][14][15][20]. 

 

 

Figure 1 Medical Form Handwriting Example [20] 

Handwriting recognition is used to tag medical 
forms, with a concept, for eventual searching and 
retrieval. The nature of the medical forms, involves 
large lexicons containing Medical, Pharmacology and 
English corpus. While current state of the art recognizers 
report recognition performance between ~58-78 percent, 

on comparable lexicon sizes [10][22], our execution 
shows ~25% raw match recognition performance. This 
illustrates the extremely complicated nature of medical 
handwriting. We have developed a method of 
automatically determining the concept of an unseen 
form using machine learning and computational 
linguistics techniques. We show how to use this 
paradigm to improve the word recognition, for a lexicon 
size of  ~5000, by ~8% raw match rate. The basis for 
reducing the lexicon to improve recognition can be 
found here [6][21]. 

2. Lexicon Concept Hypothesis 
This research proposes the following hypothesis 

which is verified experimentally: A sequence of 
confidently recognized characters, extracted from an 
image of handwritten medical text, can be used to 
represent a concept. A lexicon can be reduced by 
keeping only those words belonging to those concept(s).  

2.1.1. Anatomical Concepts 

Since the concept cannot be easily determined, a 
human is necessary to resolve the concept(s) for each 
training form. This work is dependent on the topology of 
words and concepts in the emergency medical domain. 
This anatomical topology, used as the PCR concepts, 
correspond to the patient ailment location(s). A PCR can 
be tagged with multiple concepts, but none had more 
then five tags. 
 
11 Body Systems       6 Body Range Locations 
Circulatory/Cardiac System      Abdomen 
Digestive System       Back/Thoracic/Lumbar 
Endocrine System       Chest 
Excretory System       Head 
Immune System       Neck/Cervical 
Integumentary System      Pelvic/Sacrum/Coccyx 
Musculoskeletal System       
Nervous System       2 General 
Reproductive System      Full Body 
Respiratory System       Transported Patient 
Senses 
 
4 Extremities/Joint Locations 
Arms/Shoulders/Elbows      Hands/Wrists/Fingers 
Feet/Ankles/Toes       Legs/Knees 



  
 
2.1.2. Classification 

Unfortunately, the classification of patients is not an 
exact science; hence healthcare professionals are 
provided with guidelines which cannot replace 
experience. This ambiguous nature makes the 
construction of a hierarchical chart, representing all 
patient scenarios with respective prioritized anatomical 
regions, a difficult task which exceeds the scope of this 
research. 
 
Example 1: A patient treated for an emergency 
pregnancy would be considered the Reproductive System 
concept. 
 
Example 2: A conscious and breathing patient treated for 
gun shot wounds to the abdominal region would be 
considered Circulatory/Cardiovascular System, due to 
potential loss of blood, as well as other concepts such as 
Abdominal, Back, and Pelvic concepts. 

3. Proposed Algorithm 
The algorithm proposed here is derived from the 

Lucent Technologies research [2][3] involving the call-
routing problem. Their strategy took voice recognition 
information as an input and produced the call destination 
as an output. In certain cases we deviate from their 
research to compensate for the differences in the 
research problems. However, this research shows that 
the lexicon reduction problem can be reduced to the call-
routing problem. 

In the training phase, a mechanism for relating uni-
grams and bi-grams (hereon: uni/bi-grams) and concepts 
from a PCR training deck are constructed. The testing 
phase then evaluates the algorithm’s ability to determine 
the concept, from an unseen form, by using a Lexicon 
Driven Word Recognizer (LDWR) [10] to extract the 
top-choice uni/bi-gram characters from all words. A 
maximum of two characters per word are trusted since 
the LDWR [10] will successfully extract a bi-gram with 
spatial encoding information 40% of the time. Trusting 
more then two characters by this LDWR [10] results in 
an excess of completely incorrect bi-grams. 

3.1. Training 

3.1.1. Filtering 
Stopwords are omitted from the lexicon [16][7]. An 

additional list of ~50 words (e.g. ‘male’ ‘female’ etc...), 
found in most PCR’s, which have no bearing on the 
concept, are omitted from the cohesion analysis in the 
next step, but will exist in the final lexicon. It is also 
common to apply other filtering methods on data to 
reduce the likelihood of morphological mis-matches [7]. 
However, such strategies as a stemming algorithm [7] 
cannot be applied before any recognition processes due 
to an additional layer of ambiguity; the text to retrieve is 
unknown. Consider a handwritten word image 
representing “rhythms” that needs to be recognized. The 
alteration of “rhythms” to “rhythm” in the lexicon, will 

effect recognition performance. However, at the end of 
classification, these words are considered equivalent. 
Therefore, word stemming is applied after the LDWR 
[10] has determined the ASCII word translation. This 
problem does not present in documents in which the text 
is actually known.  

3.1.2. Phrase Construction 
Diverging from the Lucent Technologies paper 

[2][3], word phrases and placeholders determination for 
separating a phrase is not used. The notion for defining a 
phrase as a sequence of adjacent non-stopwords can be 
found here [5]. Although an empirical study by Fagan 
indicated that important phrases may wrap around 
stopwords [5], the inclusion of stopwords degraded 
performance. In addition, since longer sequences of 
words, and longer sentences, were shown to be more 
successful then shorter contingent words [5], phrases are 
computed within the text area of 1 PCR region using a 
NLP cohesion technique used by Fagan [5][7]. 

A passage P is the set of all words w for a PCR form 
under a concept C treated as a single string. For each C, 
every pair of passages, denoted P1 and P2, are compared. 
Here we denote wx as a word located at position x within 
a passage P. If wa ∈ P1 and wa′ ∈ P2 and wb ∈ P1 and wb′ 
∈ P2 where b > a and b′ > a′, then a potential phrase 
consisting of exactly two words has been constructed. 
Once all potential phrases, under each C, have been 
determined, the cohesion of these phrases are computed. 
If the cohesion is above a threshold, then the potential 
phrase is considered a phrase that contributes to the 
representation for that concept C. Otherwise the 
potential phrase is thrown out. Therefore a concept C is 
represented by a sequence of phrases with high cohesion 
using only those PCR passages previously classified 
under C. 

 
 

 
The cohesion between two words wa and wb is 

computed by the frequency that wa and wb occur 
together, denoted f(wa, wb), divided by the square root of 
the independent word frequency of wa, denoted f(wa), 
times the independent word frequency of wb, denoted 
f(wb), which is then all multiplied by a constant z. In this 
research, z = 2 and the top 40 cohesive phrases are 
retained per concept (see equation (1)). 

Phrase construction is a critical component to the 
development of the system both intuitively and 
computationally: (i) only those phrases which represent 
a concept should be used to model the concept, and (ii) a 
significant quantity of terms are discarded reducing time 
and space complexity. Consider the following as an 
example construction of a phrase under a concept: 

 
Consider the two unfiltered text sentences S1 and S2 
under the concept Legs: 
  S1: “right femur fracture” 
  S2: “broken right tibia and femur” 
 
 

! 

cohesion(wa ,wb ) = z •
f (wa ,wb )

f (wa ) * f (wb ))
(1) 

 



  
 
The candidate phrases CP1 and CP2 after the filtering 
step are reduced to: 
   CP1: “right femur”, “right fracture”, “femur fracture” 
   CP2: “broken right” ... “right femur” ... 
 

A potential phrase from CP1 and CP2 will be 
computed as “right femur” since wa and wa’ = “right”, 
wb and wb’ = “femur”, and the condition b > a and b’ > 
a’ have been met. If the cohesion for “right femur” is 
above the threshold, across all PCR forms under the legs 
concept, then this phrase, representing the concept legs, 
is retained. 

3.1.3. Term Extraction 

All possible uni/bi-gram terms are then synthetically 
extracted from each cohesive phrase under each concept 
along with spatial information. For example, BLOOD 
can be encoded to the unigram 0B4 (zero characters 
before ‘B’ and four characters after ‘B’) and the bi-gram 
0B3D0 (zero characters before ‘B’, three characters 
between ‘B’ and ‘D’ and zero characters following ‘D’). 
All possible synthetic spatial encodings are generated 
for each phrase and chained together (a ‘$’ is used to 
denote a chained phrase). For example,  CHEST PAIN 
encodes to: 0C4$0P0A2 ... 0C4$1A2 ... 0C0H3$0P1I1 
... 0C0H3$0P2N0, etc... Therefore, each concept now 
has a list of encoded phrases, consisting of spatially 
encoded uni/bi-grams. These terms are the most 
primitive representative link to the concept used 
throughout the training process.  

3.1.4. Term-Concept Matrix Construction 

A matrix denoted A, of size |T| x |C|, is constructed 
such that the rows of the matrix represent the set of 
terms T, and the columns of the matrix represent the set 
of concepts C. The value at matrix coordinate (t,c), is the 
frequency that each term is associated with the concept. 
 
Step 1 Compute the normalized matrix B from A using 
equation (2) [2]: 

 
 
 
 

 
 
Matrix A is the input matrix containing raw frequencies, 
Matrix B is the output matrix with normalized 
frequencies, and (t,c) is a (term, concept) coordinate 
within a matrix. 
 
Step 2 Term Discrimination Ability 
   The popular TF*IDF (i.e. Term Frequency * Inverse 
Document Frequency) weighting approach is used to 
favor those terms which occur frequently with a small 
number of concepts, as opposed to their existence in all 
concepts. Two famous scientists in NLP, Luhn [12] and 
Salton [19] produced theories on the discrimination 
ability for terms and documents (i.e. ‘concept’ in this 
research). While Luhn [12] asserted that medium 
frequency terms would resolve a document the best, it 

precludes classification of more rare medical words. 
Salton’s [19] theory, stating that terms with the most 
discriminate power are associated with fewer 
documents, allows rare-medium frequent word to 
resolve the document. 
 
STEP 2A Compute the weighted matrix X from B using 
equation (3) [2][7]: 
 

 
 
 
IDF computes the inverse-document-frequency on term 
t, and c(t) is the quantity of concepts containing term t. 
 
Step 2B Weight the normalized matrix by IDF values  
using equation (4) [2][9][7]: 
 
 
 
Matrix B is the normalized matrix from Step 1, IDF is 
the computational step defined in Step 2, and Matrix X 
is a normalized and weighted matrix. 

3.1.5. Reduced Singular Value Decomposition [4] 

The normalized and weighted term-concept matrix 
can now be used as the knowledge base for later 
classification. A singular value decomposition variant, 
which incorporates a dimensionality reduction step, 
allows a large term-concept matrix to represent the PCR 
training set (5). This facilitates a concept query from an 
unknown PCR using the LDWR [10] determined terms 
later via [2][4]. 
 
 
 
Matrix X is a matrix which is decomposed into 3 
matrices: U is a (T × k) matrix representing term 
vectors, S is a (k × k) matrix, and V is a (k × C) matrix 
representing concept vectors. 

The value k represents the quantity of dimensions to 
keep; hence the matrices are operating in k-dimensional 
space. If k equals the quantity of concepts to model, then 
the SVD is performed without the reduction step. 
Therefore, in order to reduce the dimensionality, the 
condition k < |C| is necessary. The theory behind the 
reduction is that the collapse of dimensional space can 
reduce noise [4]. 

3.2. Testing 
Given an unknown PCR form, the task is to 

determine the concept of the form, and use the reduced 
lexicon associated with the determined concept to drive 
the LDWR [10]. 

Similarly with the call-routing paper [2][3], the query 
task is broken up into the following steps (with the 
precursor of Binarization to the Term Extraction step): 

• Term Extraction 
• Pseudo-Concept Generation 
• Candidate Concept Selection 
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3.2.1. Binarization 

PCR handwriting regions are extracted from a carbon 
copy down sampled grayscale document using the 
binarization and post-processing algorithm in [13] 
(compare Figures 1 and 2). Recognition performance is 
dependent on the clarity and solidarity of this 
handwriting information. 
 
 
 

Figure 2 Carbon Copy Handwriting Example [13] 

 
 

Figure 3 Binarized and Processed Text [13] 

3.2.2. Term Extraction 
Given a new PCR image, all image words are 

extracted from the form, and the LDWR [10] is used to 
produce a list of confident characters for each word. 
Only the most confident characters are used to encode 
the spatial uni/bi-grams consistent with the format 
during training. All combinations of uni/bi- phrases, in 
the PCR being evaluated, are constructed. Each word 
will have exactly one uni-gram and exactly one bi-gram; 
a phrase will consist of exactly two unknown words, and 
therefore be represented by precisely four uni/bi-phrases 
(BI-BI, BI-UNI, UNI-BI and UNI-UNI). 

3.2.3. Pseudo-Concept Generation 
An m x 1 query vector Q is produced, which is 

populated with the term frequencies for the generated 
sequences from the Term-Extraction step. If a term was 
not encountered in the training set, then it is thrown out. 
Spatial bi-grams are generated and found as trained 
terms 37% of the time, and similarly, spatial uni-grams 
57% of the time. The experiments illustrate this to be a 
sufficient quantity of terms (see Section 6). A scaled 
vector representation of Q is then produced by 
multiplying QT and U. 

3.2.4. Candidate Concept Selection 

The task is now to compare the pseudo-concept 
vector Q with each vector in Vr • Sr (from the training 
phase) using a scoring mechanism. Consistent with 
[2][3], the cosine score is used for matching the query. 
Both x and y are dimensional vectors used to compute 
the cosine in the following equation (6): 

 
 
 
 

 
Each cosine score is then mapped to a point on a 

sigmoid function, using the least square fitting method, 
thereby producing a more accurate confident score 
[2][3]. The least squares regression line equations used 
to satisfy the equation f(x) = ax + b are (7) (8) [11]: 

 
 
 
 

 
 
 
 
 

The fitted sigmoid confidence is produced, using the 
cosine score and the regression line, via the equation (9): 

 
 
 
 

The sigmoid confidence scores, one for each concept, 
are then used to rank the chosen concepts in order of 
preference. The rank is then thresholded, and all words 
under the selected concepts are used to construct a new 
lexicon, which is then submitted to the LDWR 
recognizer [10]. Given a PCR in question, and this 
newly reduced lexicon, the LDWR [10] iterates though 
all image representations of handwritten medical words 
producing an ASCII interpretation.  

3.2.5. Result and Truth Comparison 
Each word which is recognized (i.e. the result) is 

finally compared to the human classification of the word 
(i.e. the truth) to determine performance. However, a 
simple string comparison is insufficient due to spelling 
mistakes and root variations of word forms which are 
semantically identical. This occurs 20% of the time 
within the test deck words. Therefore, a Porter stemming 
[17][8][18] and a Levenshtein String Edit Distance [1] 
of 1 allowable penalty are performed on both the truth 
and result before they are compared. Levenshtein is only 
applied to a word that is believed to be ≥ 4 characters in 
length. For example, PAIN and PAINS are identical. 
However, this also results in an improper comparison in 
~11% of the corrections. These are the words 
incorrectly classified as equivalent: 

 
  FIGHT vs EIGHT vs LIGHT        FINE vs FIRE 
  MEDICAL vs MEDICATION      FOOD vs FOOT 
  1400 vs 2400           LEFT vs LIFT 
  BAIL vs RAIL           MOANING vs MORNING 
  BALL vs CALL           MARK vs MARY 
  MOLE vs MOVE           PUNCH vs LUNCH 
  CALF vs CALL           REACH vs REACT  
  CARD vs CARE vs CART          SCARE vs CARE 
  COLD vs TOLD           SEVER vs FEVER 
  NECK vs DECK           STABLE vs TABLE 
  FALL vs CALL        
  FEET vs FEED        
  FOUND vs BOUND vs SOUND vs POUND 
 

3.2.6. Medical Form Search Engine 

Finally, a set of unknown medical forms can be 
automatically classified into their appropriate 
concept(s). After all forms have been tagged with a 
concept, an authorized user can then supply a series of 
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keywords as input, which is then compared to the 
cohesive phrases of the known concept(s). The PCR’s 
matching those concept(s) are then returned to the user. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4 Concept Tagging and Query Engine 

4. Results 
In this section, the results of several experiments 

illustrate the effectiveness of this algorithm. Accept rate, 
error rate, and raw rates are reported for each 
experiment. 

 
Table 1 Handwriting Recognition Performance 
 

 CL CLT AL ALT RL RLT 

ACC 74.93% 75.32% 62.48% 66.44% 69.40% 70.18% 
ERR 70.49% 67.98% 55.32% 43.45% 59.61% 57.20% 
RAW 24.57% 26.86% 33.33% 44.44% 31.99% 34.34% 
TLS 5,029 6,561 1,080 1,115 2,449 2,520 
!L 0% 0%  24.62% 6.58% 14.57% 10.88% 
!HL - - 25.85% 96.61% 43.30% 57.94% 

 
Table 2 Environment 

 
Training Deck PCR Size 619 
Testing Deck PCR Size 40 
Training Deck Words 5,029 
Testing Deck Words 1,791 
Training + Testing Deck Words 6,561 
Modeled Concepts 23 
Concepts used in Lexicon Reduction 5 
Maximum Concepts per Form 5 
Average Concepts per form 1.4 
Cohesion Threshold Per Concept Top 40 
Apple OS X Memory Usage 400 MB 
Apple OS X G4 1GHZ Runtime 90 mins 

 
PERFORMANCE MEASURES 
ACC (accept recognition rate) 
This value reports how many words the LDWR [10] was 
confident in accepting (i.e. those words above an 
empirically decided threshold). 
 
 
 
 

ERR (error recognition rate) 
This value reports how many LDWR [10] accepted 
words (i.e. those words above an empirically decided 
threshold) were incorrect accepts. 
 
RAW (raw recognition rate) 
This value represents the performance ignorant of 
accept/reject values. This rate is the rate for which the 
top choice LDWR [10] word matched the truther word. 
 
TLS (total lexicon size) 
The size of the lexicon either complete or by reduction. 
 
!L (truther word not present in the lexicon) 
This value indicates the percentage of words, for a 
specific experiment, not in the lexicon as a result of 
incorrectly chosen concept(s) or the absence of that 
word in the training deck; depending on the experiment. 
 
!HL (human could not completely decipher word) 
This value indicates the percentage of those values in the 
!L set in which the human could not reasonably decipher 
all or some of the characters in the word. 
 
EXPERIMENTS 
CL (complete training lexicon) 
The complete lexicon, which is the union of all words in 
the training set, is submitted to the LDWR [10]. 
 
CLT (complete training lexicon + test deck lexicon) 
The complete lexicon, which is the union of all words in 
the training and test sets, are submitted to the LDWR 
[10]. 
 
AL (assumed training lexicon) 
This is a reduced lexicon from the training deck such 
that the concepts are assumed to be determined by an 
Oracle. Only words from those assumed concepts are 
used in the lexicon construction. 
  
ALT (assumed training lexicon + test deck lexicon) 
Same as AL except that all words from the test set are 
inserted into the training deck concept lexicon. This 
shows the best case theoretical upper bound for the 
effectiveness of the reduced lexicon strategy. 
 
RL (reduced lexicon) 
The reduced lexicon from the training deck, which is the 
union of words from the top 5 ranked concepts is 
submitted to the LDWR [10]. This is a practical 
measure of the performance of the system. 
 
RLT (reduced lexicon + test deck lexicon) 
Same as RL except that all words from the test set are 
inserted into the training deck concept lexicon. This 
shows the effectiveness under the assumption that the 
concept lexicons are complete. 
 
 
 



  
 
DISCUSSION 

The theoretical RLT (i.e. comparing RLT to CLT) 
improves the RAW match rate by 7.48% and drops the 
error rate 10.78%, while removing 61.59% of the 
lexicon words. 

The practical RL (i.e. comparing RL to CL) 
improves the RAW match rate by 7.42% and drops the 
error rate 10.88%, while removing 51.30% of the 
lexicon words.  

The reason why the RLT and RL numbers are close 
is due to the different in the initial lexicon sizes: 
CLT/RLT starts with 6,561 words (i.e. training deck and 
testing deck lexicons) whereas the CL/RL starts with 
5,029 words (i.e. training deck lexicon only). The RLT 
lexicon is more complete, but the lexicon will be larger. 
The RL lexicon is less complete, but the lexicon will be 
smaller. Both ways show a benefit: RLT benefits b/c the 
recognizer has a greater chance of the word being a 
possible selection; the RL benefits with the lexicon 
being smaller, therefore a word already in the lexicon 
has a greater chance of being selected. This dual benefit 
shows strength in the scalability of the paradigm. 

The ALT shows the maximum theoretical upper 
bound for the paradigm: (i) the concepts are correctly 
determined 100%, and (ii) the lexicon is complete. The 
ALT (i.e. comparing ALT to CLT) improves the RAW 
match rate by 17.58% and drops the error rate 24.53%, 
while removing 83.01% of the lexicon words.  

5. Future Work 
In order to accomplish a completely operational 

health surveillance system, the following tasks remain: 
• A form dropout and registration system. 
• A word location and segmentation algorithm. 
• The integration of a symbol recognizer. 
• The inclusion of semantic stemming/spelling. 
• Automated concept determination. 
• Paradigm scalability using a nationally sampled 

training and test deck. 

6. Conclusions 
This paper defines a new paradigm for lexicon 

reduction in the complex situation of handwriting 
recognition of medical forms. The strategy is novel in its 
hybridization of linguistics, statistical modeling and 
handwriting recognition. A series of theoretical and 
practical recognition rates are provided as evidence. An 
improvement of ~7.5-17.6% raw match rate, ~11-25% 
reduction in error rate, and ~50-80% reduction in 
lexicon size have been shown in these practical and 
theoretical experiments. Basic intuition into human 
cognitive processes during the recognition of a word, in 
unknown and unclear contexts, can be seen. 
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