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Abstract 

 
The “one against one” and the “one against all” are 

the two most popular strategies for multi-class SVM; 

however, according to the literature review, it seems 

impossible to conclude which one is better for 

handwriting recognition. Thus, we compared these two 

classical strategies on two different handwritten 

character recognition problems. Several post-processing 

methods for estimating posterior probability were also 

evaluated and the results were compared with the ones 

obtained using MLP. Finally, the “one against all” 

strategy appears significantly more accurate for digit 

recognition, while the difference between the two 

strategies is much less obvious with upper-case letters. 

Besides, the “one against one” strategy is substantially 

faster to train and seems preferable for problems with a 

very large number of classes. To conclude, SVMs allow 

significantly better estimation of probabilities than MLP, 

which is promising from the point of view of their 

incorporation into handwriting recognition systems. 

 

Keywords: Support Vector Machine (SVM), Multi-class 
Classification, Posterior Probability Estimation.  

1. Introduction 

In the 1990s, a new type of learning algorithm was 
developed: the Support Vector Machine (SVM). As 
shown in the Burges’ tutorial [1], SVM has several 
interesting properties for pattern recognition. Moreover, 
thanks to improved computing power and the 
development of fast learning algorithms, it is now 
possible to train SVM in real-world applications. 

However, although SVM has attracted a great deal of 
attention in the machine learning community, the multi-
class SVM is still an ongoing research issue. The 
existing methods can roughly be divided between two 
different approaches: the “single machine” approach, 
which attempts to construct a multi-class SVM by 
solving a single optimization problem, and the “divide 
and conquer” approach, which decomposes the multi-
class problem into several binary sub-problems, and 
builds a standard SVM for each. The most popular 
decomposing strategy is probably the “one against all”, 
which consists of building one SVM per class, trained to 
distinguish the samples in a single class from the 
samples in all remaining classes. Another popular 

strategy is the “one against one”, which builds one SVM 
for each pair of classes. On the other hand, more 
complex decomposition schemes based on error 
correcting output codes (ECOC) have been introduced 
by Diettrich & Bakiri [2] and more recently extended by 
Allwein et al. [3]. A comparison of several multi-class 
SVM methods (2 “single machine” and 3 “divide and 
conquer”) has been realized by Hsu & Lin [4]. The 
results observed are very similar; however, the authors 
conclude that “one against one” is more practical, 
because the training process is quicker. Moreover, as to 
the claim put forward by Allwein et al. [3] that “one 
against one” and other ECOC are more accurate than the 
“one against all” strategy, Rifkin & Klautau [5] disagree, 
arguing that the “one against all” strategy is as accurate 
as any other approach, assuming that the SVMs are well 
tuned. Thus, according to the literature review, it seems 
impossible to conclude which multi-class SVM is better 
for handwriting recognition. For this reason, we chose to 
compare the two most popular strategies, which are “one 
against all” and “one against one”. 

On the other hand, generally in handwriting 
recognition applications, the classifier only contributes 
to a small part of the final decision. It is essential, then, 
that the output of the classifier is a calibrated confidence 
measure, like posterior probability. However, although 
standard SVMs do not provide such probabilities, a 
simple post-processing method for mapping the outputs 
of a single SVM into posterior probabilities has been 
proposed by Platt [6] and improved by Lin et al. [7]. 
Moreover, while many methods for estimating 
probabilities with the “one against one” strategy have 
been proposed [8, 9, 10], probability estimation with the 
“one against all” strategy has not, to the best of our 
knowledge, been studied. The likely reason for this is 
that, with this strategy, mapping the outputs of each 
SVM separately seems sufficient for estimating multi-
class probabilities; but, as we will see, this is not 
necessarily the best solution. 

The remainder of this paper is organized as follows. 
Section 2 presents our experimental protocol (database, 
baseline classifier, and comparison criteria). Section 3 
describes the “one against all” strategy, and compares 
two post-processing methods to estimate posterior 
probability. Section 4 describes the “one against one” 
strategy, and compares three methods for combining the 
probabilities by each SVM. Finally, section 5 compares 
the two strategies in terms of complexity and accuracy, 
and section 6 concludes with some practical suggestions.  



  
 

 

2. Experimental Protocol 

The experiments were conducted on a personal 
computer with 1.9 GHz CPU and 1 Go of RAM. All the 
SVMs were trained with the LIBSVM software [11]. We 
used the C-SVM with a Gaussian kernel. The kernel 
parameter γ and the regularization parameter C were 
empirically optimized by minimizing the error rate on 
the validation dataset. 

2.1. Database 

We used the NIST-SD19 database [12], which 
contains the full-page binary images of Handprinted 
Sample Forms (HSF) from 3,600 writers. In our 
experiments, we used only the images of isolated 
handwritten digits and uppercase letters. The number of 
samples in each dataset is reported in Table 1. The 
training datasets contain exactly the same number of 
examples in each class, which are the first images from 
the hsf_{0,1,2,3} corpus. The validation datasets are 
composed of the remaining images from hsf_{0,1,2,3} 
for the digit database and of all images from the hsf_4 
corpus for the letter database. Finally, the testing datasets 
are composed of all the images from the hsf_7 corpus. 

Table 1. Number of samples in each dataset. 

 Digit Letter 

Training 195,000 43,160 

Validation 28,123 11,941 

Testing 60,089 12,092 

 
We chose to use the same feature extraction 

procedure as Oliveira et al. [13]. Indeed, this feature 
space has been used on the same digit dataset and made 
it possible to obtain an accurate classification. According 
to this method, each image is divided into six zones: 3 
rows and 2 columns. In each zone, 22 components are 
extracted: 13 concavity measures, 8 corresponding to the 
histogram of the contour directions and one related to the 
surface of the character. Finally, we obtained 132 
discriminative features, normalized to between 0 and 1. 

2.2. Baseline Classifier 

We have elected to use a Multi-Layer Perceptron 
(MLP) as the baseline classifier because this type of 
artificial neural network makes it possible to estimate 
accurate posterior probabilities and has been widely 
incorporated into handwriting recognition systems. 

For our experimentation, we used the same type of 
topology as Oliveira et al. [13], in which an MLP is used 
for recognizing handwritten numerical strings. The 
network used has one hidden layer. The neurons of the 
input and the output layers are fully connected to the 
neurons of the hidden layer, and the transfer function is 
the sigmoid function. Furthermore, the network is 
trained with a sequential gradient descent with 
momentum applied to a sum-of-squares error function. 

The error rates obtained with MLP are reported in 
Table 2 and compared with another classical classifier: 
the k-Nearest Neighbor. 

Table 2. Error rate obtained on the testing dataset. 

 Digit  Letter  

k-NN  1.35% 7.60% 

MLP 0.80% 3.81% 

 

Let us note that the number of hidden neurons 
(h = 80 for digit, and h = 100 for letter)  and the number 
of neighbors (k = 1 for digit, and k = 3 for letter) are 
fixed using the validation dataset. 

2.3. Comparison Criteria 

To compare the different approaches in terms of 
accuracy, the simplest way would be to evaluate the 
error rate on the testing dataset, but this value is often 
not accurate enough. For this reason, an error function is 
generally used for comparing the various probability 
estimates. We chose to use the negative log-likelihood: 

  

! log P̂ "
k

| x
k( )� �

k=1

n

# , (1) 

where !
k
 denotes the label of the sample x

k
. 

In addition, we propose to use a third measure based 
on the reject option. Indeed, if the posterior probabilities 
of the data classes are known exactly, then, as Chow 
demonstrated in [14], the optimal reject option is to 
reject a sample x if: 

   
max
j =1,…, c

P(!
j

| x)( ) < T . (2) 

Then, the threshold T defines the rate of samples 
rejected and consequently the error rate among the 
samples accepted. Thus, a complete description of 
recognition performance is given by the error-reject 
tradeoff, which is obtained by varying T. An example is 
shown in Figure 1. However, in real applications, such 
probabilities are affected by significant estimate errors, 
and the better the probabilities estimate is, the better the 
error-reject tradeoff is. Thus, we propose to evaluate the 
rejection rate necessary to decrease the error rate to a 
specific value (0.1% for digits and 0.5% for letters). 

 

Figure 1: Error-reject tradeoff obtained with the 
baseline classifier on the digit dataset. 



  
 

 

3. The “One Against All” Strategy 

3.1. Description 

The “one against all” strategy consists of 
constructing one SVM per class, which is trained to 
distinguish the samples of one class from the samples of 
all remaining classes. Usually, classification of an 
unknown pattern is done according to the maximum 
output among all SVMs. 

3.2. Probability Estimation 

The most intuitive approach to estimate posterior 
probability with the “one against all” strategy is to 
separately map the outputs of each SVM into probability 
using the method proposed by Platt [6], which consist of 
using an additional sigmoid:  

  

P̂ !
j
| f

j
(x)( ) =

1

1+ exp A
j

f
j
(x) + B

j( )
, (3) 

where f j (x)  denotes the output of the SVM trained to 

separate the class ! j  from all the others. Then, for each 

sigmoid the parameters Aj and Bj are optimized by 
minimizing the local negative log-likelihood: 

  

! t
k

log p
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where, pk denotes the output of the sigmoid and tk the 
probability target. To solve this optimization problem, 
Platt [6] proposes using a model-trust minimization 
algorithm based on the Levenberg-Marquardt algorithm. 
However, Lin et al. [7] showed that there are some 
problems with this algorithm and propose using another 
minimization algorithm based on Newton’s method with 
backtracking line search. 

However, nothing guarantees that: 
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j
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c
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For this reason, it seems preferable to normalize the 
probabilities as follows: 
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j
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Another approach to estimate posterior probability 
with the “one against all” strategy would be to exploit 
the outputs of all SVMs to estimate overall probabilities. 
In order to do this, we propose using the softmax 
function, which can be regarded as a generalization of 
the sigmoid function for the multi-class case. Thus, in 
the same spirit as Platt’s algorithm, we use a parametric 
form of the softmax function: 
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j
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and derive the parameters Aj and Bj by minimizing the 
global negative log-likelihood (Eq. 1). 

Thus, it is necessary to construct a dataset of SVM 
outputs, which will be used to fix the parameters of 
sigmoid and softmax functions. The easiest way to do 
this is to use the same training samples used to fit SVMs; 
but, as pointed out by Platt [6], using the same data 
twice, can sometimes lead to a disastrously biased 
estimate. Therefore, it is preferable to derive an unbiased 
training set of the SVM outputs. A first solution would 
be to use a validation dataset; but, in our case, the 
number of samples in each class is not proportional to 
the prior probability. For this reason, it seems preferable 
to use cross-validation. Then, the training dataset was 
split into four parts. Each of four SVMs is trained on 
permutations of three out of four parts, and the SVM 
outputs are evaluated on the remaining fourth part. 
Finally, the union of all four sets of SVM outputs forms 
an unbiased dataset, which can be used to fix the 
parameters of functions. Furthermore, once the 
parameters are fixed, the final SVM is trained on the 
entire training set. 

3.3. Experimental Results 

Firstly, we tested the “one against all“ strategy with 
the classical decision making, which directly exploits the 
SVM outputs. The error rates obtained on the testing 
datasets are 0.63% with digits and 3.24% with letters. 
Thereafter, we implemented the two approaches for 
mapping the SVM outputs into probabilities. The results 
obtained on the testing dataset are reported in Table 3 
and Table 4. Considering these results, a number of 
remarks can be derived. First, the two post-processing 
methods allow a slight reduction of the error rate on the 
letter dataset, while no improvement is observed on the 
digit dataset. Second, as we thought, the error rate is not 
accurate enough in comparing the various estimates. 
Indeed, while the error rates obtained with the two 
methods are similar, the rejection rates and the negative 
log-likelihood (NLL) are significantly different. Finally, 
it appears that it is better for posterior probability 
estimation to optimize globally a softmax function than 
locally several sigmoid functions. 

Table 3. Results obtained with the “one against all” 

strategy on the digit dataset. 

 error rate 

- no rejection - 

rejection rate 

- 0.1% of error - 
NLL 

sigmoid  0.64% 3.73% 1,517 

softmax 0.63% 2.30% 1,310 

 

Table 4. Results obtained with the “one against all” 
strategy on the letter dataset. 

 error rate 

- no rejection - 

rejection rate 

- 0.5% of error - 
NLL 

sigmoid  3.17% 13.17% 1,570 

softmax 3.18% 10.07% 1,375 



  
 

 

4. The “One Against One” Strategy 

4.1. Description 

The “one against one” strategy, also known as 
“pairwise coupling”, “all pairs” or “round robin”, 
consists in constructing one SVM for each pair of 
classes. Thus, for a problem with c classes, c(c-1)/2 
SVMs are  trained to distinguish the samples of one class 
from the samples of another class. Usually, classification 
of an unknown pattern is done according to the 
maximum voting , where each SVM votes for one class.  

4.2. Probability Estimation 

After mapping the output of each SVM into 
probability with a sigmoid function, the task is to express 

the global posterior probabilities 
  
P̂(!

j
| x)  as functions 

of the local posterior probabilities 
  
P̂ !

j
| f

j , j '
(x)( ) , 

where 
  
f

j , j '
(x)  denotes the output of the SVM trained to 

distinguish class ω j from class ω j’. Various methods 
have been proposed in the literature. We chose to 
compare three of these: 

 

• Method 1 
 

Price et al. [8] considered that for all classes 
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j
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where 
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Then, using: 
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it is possible to derive the following expression: 
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However, since nothing guarantees that the sum of all 
the probabilities is 1, we must divide each estimate 

  
P̂(!

j
| x)  by 

  

P̂(!
j
| x)

j=1

c
" . 

 

• Method 2 
 

In a different way, Hastie & Tibshirani [9] proposed 
using an iterative algorithm to estimate the posterior 

probabilities 
  
p
j
= P̂(!

j
| x) , which minimizes the 
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where n jj '  denotes the number of training samples in the 

classes 
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 and 
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. To this end, they start with simple 

non-iterative estimates: 
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and repeat 
 
( j = 1, 2,…, c,1,…)  until convergence: 

1. 
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In practice, we used the following stopping condition: 

p
j
(t) + p

j
(t +1)( )

2

j=1

c

" # 10
!12

, (13) 

where p
j
(t)  denotes the actual values of p

j  and 

p
j
(t !1)  the previous values of p j . 

 

• Method 3 
 

More recently, Hamamura et al. [10] proposed a 
combination based on the assumption that discriminant 
functions are independent of one another. Then, since 
prior probabilities are all the same, posterior 
probabilities can be estimated by: 

P̂(! j | x) =

P̂ ! j | f j , j ' (x)( )
j '=1, j '" j

c

#

P̂ ! j '' | f j '', j ' (x)( )
j '=1, j '" j ''

c

#
j ''=1

c

$
. (14) 

 

4.3. Experimental Results 

Firstly, we tested the “one against one“ strategy with 
the classical voting rule. The error rates obtained on the 
testing datasets are 0.71% with digits and 3.29% with 
letters. Thereafter, we implemented the three methods 
for combining probabilities. The results obtained on the 
testing dataset are reported in Table 5 and Table 6. 

Considering these results, two remarks can be made. 
First, the last method is less accurate than the first two, 
which yield significantly better rejection rates and 
negative log-likelihoods on the two datasets. Second, 
although the results obtained with the first two methods 
are comparable, the first method seems slightly more 
accurate than the second. Indeed, the first method yields 
better error rate on the letter dataset and better negative 
log-likelihoods on the two datasets. Moreover, the first 
method has the advantage of being non-iterative and is 
thus faster than the second method. 



  
 

 

Table 5. Results obtained with the “one against one” 
strategy on the digit dataset. 

 error rate 

- no rejection - 

rejection rate 

- 0.1% of error - 
NLL 

method 1  0.70% 3.49% 1,483 

method 2 0.69% 3.37% 1,604 

method 3 0.70% 4.31% 1,825 

 

Table 6. Results obtained with the “one against one” 
strategy on the letter dataset. 

 error rate 

- no rejection - 

rejection rate 

- 0.5% of error - 
NLL 

method 1  3.22% 11.22% 1,421 

method 2 3.37% 11.36% 1,548 

method 3 3.29% 13.89% 2,197 

 

5. Comparison of the two strategies 

We can now try to answer to the question raised in 
our title. With this in mind, we compared the two 
strategies in terms of accuracy, but also in terms of 
complexity. 

5.1. Comparison in terms of accuracy 

The results obtained on the testing dataset are 
reported in Table 7 and Table 8, and the error-reject 
tradeoffs are shown in Figure 2 and Figure 3. 
Concerning the “one against all” strategy (OAA) the 
softmax function is used for probability estimation, 
while the method 1 is used for combining the 
probabilities of the “one against one” strategy (OAO).  

Table 7. Comparison in terms of accuracy on the 
digit dataset. 

 error rate 

- no rejection - 

rejection rate 

- 0.1% of error - 
NLL 

MLP 0.80% 6.30% 2,591 

SVM - OAO 0.70% 3.49% 1,483 

SVM - OAA 0.63% 2.30% 1,310 

 

 

Figure 2: Comparison of the error-reject tradeoff 

obtained on the digit dataset. 

Table 8. Comparison in terms of accuracy on the 
letter dataset. 

 error rate 

- no rejection - 

rejection rate 

- 0.5% of error - 
NLL 

MLP 3.81% 22.83% 2,923 

SVM - OAO 3.22% 11.22% 1,421 

SVM - OAA 3.18% 10.07% 1,375 

 

 

Figure 3: Comparison of the error-reject tradeoff 
obtained on the letter dataset. 

Considering these results, two conclusions can be 
made. First, in agreement with the literature, SVMs 
allow more accurate classification than a classical MLP. 
Second, in disagreement with Allwein et al. [3], in our 
experiments, the “one against all” strategy is more 
accurate than the “one against one”. Indeed, if the 
difference between the two strategies is small on the 
letter dataset, it is significant on the digit dataset. 

5.2. Comparison in terms of complexity 

Two types of complexity must be considered: 
 

• The complexity of the training process 
 

It can seem logical that the total training time with 
the “one against one” strategy is larger than with the 
“one against all”, because it is necessary to train more 
binary classifiers; but it is not true when the binary 
classifiers are SVMs. Indeed, the training time of an 
SVM increases more than linearly with the number of 
training samples. Thus, since each sub-problem involves 
a small number of training samples and is easier to solve, 
it is quicker to train the c(c-1)/2 SVMs of the “one 
against one” strategy than the c SVMs of the “one 
against all” strategy. In ours experiments, the total 
training time is approximately divided by 12 with letters 
(see Table 9) and by 50 with digits (see Table 10). 

 
• The complexity of the decision making process 
 

Again, it can seem logical that the decision making 
with the “one against one” strategy is more complex than 
with the “one against all”, because it is necessary to 
evaluate more decision functions; but, as previously, it is 
not necessarily true with SVMs. Indeed, the complexity 
of an SVM’s decision making is directly linked to the 



  
 

 

number of support vectors (SVs), and although the 
decision making is more complicated in the multi-class 
case, it is reasonable to consider that the complexity is 
proportional to the total number of support vectors1. 
However, in our experiments the “one against all” 
strategy uses more support vectors than the “one against 
one” (48% more for digits, and 21% more for letters). 

 

Table 9. Comparison of the two strategies in terms 
of complexity on the digit dataset. 

 OAO OAA 

number of SVMs 45 10 

total training time 36 min. 32 h 17 

number of SVs 5,753 8,514 

 

Table 10. Comparison of the two strategies in terms 

of complexity on the letter dataset. 

 OAO OAA 

number of SVMs 325 26 

total training time 4 min. 51 min. 

number of SVs 9,152 11,109 

 

6. Conclusion 

Finally, our answer to the title question will depend 
on what the problem is! Indeed, it is not reasonable to 
claim that one strategy is always better that the other; but 
according to the application constraints, the number of 
classes, and the number of training samples, it will be 
one or the other of the two strategies that will be more 
suitable to solve the classification problem. Thus, 
considering the conclusions of the previous section, 
some suggestions can be made as to which strategy is 
best for a specific problem. For problems with few 
classes, like digit recognition, the “one against all” 
strategy seems significantly more accurate; while for 
problems with more classes, like Latin letter recognition, 
the difference of accuracy between the two strategies 
seems much less significant. Lastly, for problems with a 
very large number of classes, like Chinese or Japanese 
ideogram recognition, we suspect that the unbalance of 
the number of the samples causes problem with the “one 
against all” strategy, especially when it has few training 
samples per class. Moreover, the “one against one” 
strategy, which is more modular, is more suitable for 
speeding up the decision making process by combining 
with other classifiers [15]. Furthermore, if the number of 
training samples is very large, the training time can 
                                                             
1 Notes that in the multi-class case, the total number of 
support vectors is not necessarily equal to the sum of the 
number of support vectors of each SVM, because a 
training sample can be a support vector for several 
SVMs. 

become problematic, and then the “one against one” 
strategy appears more suitable for practical use. To 
conclude, we have shown in this paper that appropriate 
post-processing make it possible to estimate accurate 
posterior probabilities with SVMs. Thus, these 
promising results open the way to new perspectives with 
respect to incorporating SVMs into handwriting 
recognition systems. 
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