On the expressivity and complexity of quantitative branching-time temporal logics.

François Laroussinie 1 Philippe Schnoebelen 1 Mathieu Turuani 2
2 CASSIS - Combination of approaches to the security of infinite states systems
FEMTO-ST - Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174), INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We investigate extensions of CTL allowing to express quantitative requirements about an abstract notion of time in a simple discrete-time framework, and study the expressive power of several relevant logics. When only subscripted modalities are used, polynomial-time model checking is possible even for the largest logic we consider, while the introduction of freeze quantifiers leads to a complexity blow-up.
Document type :
Journal articles
Complete list of metadatas

https://hal.inria.fr/inria-00104145
Contributor : Mathieu Turuani <>
Submitted on : Thursday, October 5, 2006 - 6:01:58 PM
Last modification on : Friday, April 12, 2019 - 10:18:03 AM

Links full text

Identifiers

Citation

François Laroussinie, Philippe Schnoebelen, Mathieu Turuani. On the expressivity and complexity of quantitative branching-time temporal logics.. Theoretical Computer Science, Elsevier, 2003, Theoretical Computer Science, 1-3 (297), pp.297-315. ⟨10.1016/S0304-3975(02)00644-8⟩. ⟨inria-00104145⟩

Share

Metrics

Record views

233