Combining Multiple Features for Text-Independent Writer Identification and Verification

Abstract : In recent years, we proposed a number of new and very effective features for automatic writer identification and verification. They are probability distribution functions (PDFs) extracted from the handwriting images and characterize writer individuality independently of the textual content of the written samples. In this paper, we perform an extensive analysis of feature combinations. In our fusion scheme, the final unique distance between two handwritten samples is computed as the average of the distances due to the individual features participating in the combination. Obtained on a large dataset containing 900 writers, our results show that fusing multiple features (directional, grapheme, run-length PDFs) yields increased writer identification and verification performance.
Type de document :
Communication dans un congrès
Guy Lorette. Tenth International Workshop on Frontiers in Handwriting Recognition, Oct 2006, La Baule (France), Suvisoft, 2006
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00104189
Contributeur : Anne Jaigu <>
Soumis le : vendredi 6 octobre 2006 - 09:30:02
Dernière modification le : vendredi 6 octobre 2006 - 10:01:13
Document(s) archivé(s) le : mardi 6 avril 2010 - 18:39:38

Identifiants

  • HAL Id : inria-00104189, version 1

Collections

Citation

Marius Bulacu, Lambert Schomaker. Combining Multiple Features for Text-Independent Writer Identification and Verification. Guy Lorette. Tenth International Workshop on Frontiers in Handwriting Recognition, Oct 2006, La Baule (France), Suvisoft, 2006. 〈inria-00104189〉

Partager

Métriques

Consultations de la notice

206

Téléchargements de fichiers

303