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Abstract

This article presents a novel classification algorithm
for (multivariate) time series. In a first step, so-called time
series motifs, which represent characteristic subsequences
of the time series, are extracted using extreme points. In
a second step, the extracted motifs are used to train a dy-
namic radial basis function network (DRBF). Compared
to a standard radial basis function network, this DRBF
has the advantage, that not only similar motifs of the same
class are detected but also sequences of these motifs. For
performance evaluation, the proposed classification algo-
rithm is applied to online signature verification. Our ex-
periments show, that the presented DRBF based on time
series motifs is capable of a very reliable authentication
with an equal error rate of about 1.5%.

Keywords: signature verification, dynamic radial basis
function network, motif, time series, biometrics

1 Introduction

Authentication of a person’s identity is a tedium task.
Often, this is done by means of signatures. However, in
most cases a signature is compared to only one reference
signature with the naked eye. Since authentication by sig-
nature is more widely accepted than any other technique
(e.g., fingerprint or iris scan), an electronic signature ver-
ification system that ensures a high level of security must
be developed. Typeface-based techniques (so-called off-
line signature verification) can easily be outsmarted. Bio-
metric signature verification systems that are based on the
dynamics of a person’s signature and not on its image (so-
called online signature verification) are considerably bet-
ter for a reliable authentication.

In the last years, time series data mining became a
very active research topic, but methods based on motifs
are rather new in this area. A motif can be defined as a
characteristic pattern (i.e., subsequence), which is reoc-
curring within one and/or in different similar time series
(see Fig. 1). In the context of online signature verifica-
tion, a motif corresponds to a specific movement of the
hand and/or the arm of the signing person, which is reoc-
curring similarly in every signature of this person and is,
therefore, characteristic to this person.

But this definition of a motif and its application to on-
line signature verification raises two questions: How can
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Figure 1. Examples for Motifs in Time Series

the similarity of two motifs be measured and how can the
similarity of the temporal order of the motifs be assessed?
Both problems can be solved by a specifically designed
dynamic radial basis function network (DRBF), which
provides several advantages such as very good classifica-
tion performance and a fast training phase as no gradient-
based algorithm is used.

The remainder of the article is organized as follows: In
Section 2, some related work on motif-based time series
data mining and online signature verification is presented.
In Section 3.1, a distance measure for the computation of
the similarity of two motifs is introduced. The algorithm
for the extraction of motifs from time series is explained
in Section 3.2, the classification of these motifs with dy-
namic RBF networks is set out in Section 3.3. Experi-
mental results are presented in Section 4. Finally, Section
5 summarizes the major findings.

2 Related Work

Only a few researchers dealt with the extraction of mo-
tifs from time series so far, but as [5] states, motif ex-
tracted from time series can be used for a large field of ap-
plications. [14, 17] extracted motifs for various time series
data mining applications. [20] computed motifs for multi-
variate time series, representing the 3-dimensional move-
ment of body parts, to get information about repeated mo-
tion sequences of humans. For sensor data of a robot
(sonar, camera, etc.), [16] used a motif-based approach
to discover decision rules for the robot’s actions. [9] used
time series motifs to derive associative rules.



Motif based classification algorithms were not applied
to online signature verification so far, but methods based
on probabilistic models, such as Hidden Markov Models
or Gaussian Mixture Models, are closely related to motif
based algorithms, as they are also looking for character-
istic, reoccurring patterns in sequences. Such models are
widely used for online signature verification and provide
very good authentication rates (e.g., [10, 19]). Other very
popular algorithms for online signature verification are
based on sophisticated distance measures for time series,
such as Dynamic Time Warping [15] or Longest Common
Subsequences [11].

3 Motif Based Dynamic RBF Network

In this section, the novel time series classification al-
gorithm is described. The algorithm includes two major
steps. First, the extraction of time series motifs (Section
3.2) and second, the classification of these motifs with a
DRBEF (see Section 3.3). But first, an appropriate distance
measure for time series motifs is needed (Section 3.1).

3.1 Constrained Distance Measure

A key problem in time series data mining is the def-
inition of significant distance measures. Often, simple
methods, such as the Euclidian distance, or more sophisti-
cated distance algorithms, such as dynamic time warping
(DTW), are used. The Euclidian distance as well as DTW
are very sensitive to varying offsets and different ranges.
Therefore, to determine the similarity of two time series,
they have to be normalized, e.g. with respect to a refer-
ence interval (e.g., [0, 1]) or to a given mean and variance
(e.g., mean = 0 and variance = 1). But, with these
transformations based on user-defined parameters, simi-
larities within the time series are not reflected optimally.
Sometimes, two time series are aligned by linear mapping
functions, where the optimal parameters for scaling and
translation are found heuristically [2] or analytically [6].
But without constraints on parameter ranges (particularly
to avoid negative scaling parameters), such methods pos-
sibly transform dissimilar time series into similar ones.
The method proposed below computes (with regard to lin-
ear transformations, the Euclidean distance, and the given
constraints) the optimal distance of two time series ana-
Iytically and constrains the scaling and translation param-
eters to a user-specified range.

We are given two univariate time series 7' =
(t1,...,tn) and Q = (¢1,...,qn) of equal length N.
The minimal distance d,;,, (T, Q) of T and @ with con-
straints is given by

N
dyin(T, Q) = min > (a-ti+b—aq).
a < [amiru amaz] =1
Abe [bmln; bmaw]
(H
To find a global optimum, d,,;, is defined as a convex
quadratic optimization function with constraints. Gener-

ally, a convex quadratic optimization problem f can be
defined by

f(x) = minx"Cx + p'x, )

with x € R™, a symmetric (n x n)-Matrix C and an (n x
1) vector p. If C is positive semidefinite, f is convex.
If C is positive definite, f is strictly convex. The aim of
quadratic optimization with constraints is to minimize f
with regard to constraints posed on x (i.e., x € M C R"™).
If Eq. 1 is transferred to Eq. 2, C, p and x are given by

Z{i1 t2 Z]\Ll ti )
e = , 3)
( sz\; ti N

_( 2 2Ltiw)

x—<§), 5)

with constraints @ € [amin, Gmaz], D € [bmin, bmaz]. It
can be proven, that C is positive definite if the time series
T is not constant (see [8] for details). Therefore, the con-
strained minimal distance of 7" and @ can be computed
using a standard method. Here, the algorithm of Hildreth
and d’Esopo (see [3] for details) is used.

With this constrained distance measure, the dissimilar-
ity of two time series 7" and () can be computed by

DT, Q) = min(dymin(T, Q), dmin(Q,T)).  (6)

As this dissimilarity measure depends on the lengths of
the two time series, the normalized version

1
ngrm (Ta Q) = NDab (T7 Q) (7)

is used below.

It should be noted that D%
triangle inequality is not satisfied.

For online signature verification, multivariate time se-
ries must be processed and the dissimilarity measure (Eq.
7) has to be extended appropriately. We are given two
multivariate time series T = (t1,...,ty) and Q =
(q1,-..qn) of equal length N with t;,q; € R™. The
multivariate time series are transformed into univariate
time series by

T = (t,...,thy s

is not a metric as the

1o tN) ®)

with length N - n (and @’ analogously). The dissimilarity
is then given by

Dab

norm (T, Q) = Dy, (T, Q). ©)
Typically, two time series do not have equal lengths. To
apply the introduced dissimilarity measure to such time
series, it has to be extended once again. We are given
two univariate time series 7' = (71,...,Tn) and Q =
(Q1,...,Qnr) with M > N. Then, the longer time series
Q is aligned to T" by resampling ) to N equidistant data
points by means of a spline interpolation technique. The
dissimilarity of 7" and @ is then given by

D;fss(T, Q) = Dggrm(Tv Qresampled)~ (10)
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Figure 2. Extraction of Time Series Motifs
3.2 Time Series Motifs

In the first step of the proposed time series classifica-
tion method, motifs have to be extracted from time series
(see Fig. 2).

In a nutshell, this algorithm works as follows: Given
a set of time series 77, ...,7}), for every time series of
this set a temporally ordered sequence of possible motifs
(so-called motif candidates) is extracted. Afterwards, sim-
ilar motifs of one time series are grouped by means of a
clustering method (i.e., motifs reoccurring in a time series
are only considered once) in order to determine a user-
defined number of characteristic motifs given by cluster
prototypes.

3.2.1 Motif Candidates of a Time Series

To extract a temporally ordered sequence of motif can-
didates, extreme points of a time series have to be found.
As a time series recorded by a technical device contains
many extreme points (e.g., due to noise) the significant
ones have to be found.

A univariate time series 7' has a significant minimum
at position m with 1 < m < N, if (¢;,...,t;) with 1 <
i < 7 < N in T exists, such that t,,, is the minimum of all
points of this subsequence and ¢; > R-t,,,t; > R-,, with
user-defined R > 1. A significant maximum is existent at
positionm with 1 < m < N, if asubsequence (¢, ... ,t;)
with 1 < ¢ < 7 < N in T exists, such that ¢,, is the
maximum of all points of this subsequence and ¢,,, > R-t;,
t;m > R - t; with user-defined R > 1.

Fig. 3 illustrates the definition of significant minima
(a) and maxima (b).
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Figure 3. lllustration of Significant Extreme Points:
(a) Minimum, (b) Maximum

Starting at the beginning of a time series 7" all signifi-
cant minima and maxima of the time series are computed
(see [18] for details). The result of this step is a sequence
of extreme points EP = (epy,...,ep;). With these sig-
nificant extreme points a set of motif candidates can be
extracted. The method for the computation of this motif
candidate sequence is set out in Algorithm 1.

1 function getMotifCandidateSequence (T)
2 N =1length (T);
3 EP=findSignificantExtremePoints

(T.R);
4 mazxLength = MAX MOTIF_LENGTH;

5 fori:=1to(length (EP)-2)do
6 motifCandidate = get Subsequence (1, ep;,
€epi+2);
7 if length (motifCandidate)> maxLength
then
8 ‘ addMotifCandidate (resample
(moti fCandidate, maxLength));
9 else
10 addMotifCandidate
‘ (moti fCandidate);
11 end
12 end
13 end

Algorithm 1: Extraction of a Set of Motif Candidates

In Algorithm 1, all significant extreme points EP(T)
of a time series 7' are extracted first. Then, all motif
candidates are computed iteratively. A motif candidate
MC(T), i = 1,...,1 — 2 is represented by that subse-
quence of 7' that is bounded by the two extreme points
ep; and ep;;o. Additionally, a motif candidate is resam-
pled using a spline interpolation method to a user-defined
MAX_MOTIF_LENGTH, if the length of this candidate ex-
ceeds this maximal user-defined length. This parameter is
especially useful, as the dissimilarity measure described in
Section 3.1 is used later to determine the distance of two
motifs. As the resampling used within this distance mea-
sure only aligns the longer motif to the shorter one, which
can still be longer than MAX_MOTIF_LENGTH and pro-
vides only global temporal compression and dilation, the
restriction of the length of a motif candidate is reasonable.
But, with an increasing motif length, local temporal com-
pressions and dilations, which have a negative impact on
the accuracy of the proposed distance measure, accumu-
late with an increasing probability (e.g., due to different
writing speeds within corresponding parts of signatures of
a person).

The result of this Algorithm 1 is a sequence of mo-
tif candidates MCS(T) = (MCy(T),...,MC;_2(T))
of an univariate time series 7' = (t1,...,tx) with
MCi(T) = (tep;y-- -t ), i=1,...,1—2.

) VePi42
3.2.2 Clustering of Motif Candidates

Having extracted the motif candidates from all time
series 11, . .. Ty, a large set of motif candidates MC'S =
{MCS(T1),...,MCS(Ty)} is obtained. As some mo-
tif candidates reoccur within the same time series or even
within several similar time series, not all of these similar
motifs are needed for classification. Similar motif candi-



dates can be combined and be replaced by one prototype.
This is achieved by clustering the motif candidates. Here,
we use a hierarchical bottom-up algorithm (see Algorithm
2 for a generic version and [21] for details).

1 function getHierarchicalClustering (MCS, u,
d)

C=getInitialClustering (MCS);

while size (C) > u do
[Ci, Cjl=getMostSimilarClusters ();
addCluster (C,mergeClusters (C;, Cj));
removeCluster (C, C;);
removeCluster (C, Cj);

end

9 return C;

AN R W

10 end
Algorithm 2: Clustering Algorithm

For this clustering, the data to be clustered (M C'S),
the desired number of clusters u, and a distance func-
tion d have to be provided. First, an initial partition C
is determined (i.e., every single motif represents a cluster,
|C| = |MCS]). Then, the following steps are repeated
until the number of clusters equals u. In the first step, the
two most similar clusters are determined. Therefor, the
distance of two clusters is computed by the average link-
age criterion
1

cluster _
D (Cla CJ) - NM

D¢ (MCy, MCj)

|/\I/\M

1 N,
1 M

INIA

(11)
with motif candidates MC; (i=1...N)and MC; (j =
1...M) denoting the members of the two clusters
C; (|Ci| = N) and C;j (|C;| = M), respectively.

As prototype M Cc, of a cluster C; the median center
is used which is given by the following property

VYMC; € C; : med (D?SS(MCCH MC))|MC; € ci)
< med (D?SS(MCJ-, MCy)|MC; € Ci) . (12)

The two most similar clusters are then merged into one,
a new prototype for this cluster is computed, and the two
most similar clusters are removed from the set of clusters.

The result of this clustering of M C'S is a set of motifs
M S with |M S| = u consisting of the prototypes of the u
clusters Cq, ..., C,.

3.3 Dynamic RBF networks

RBF networks are widely used for various pattern
recognition problems [1]. In general, RBF networks real-
ize nonlinear functions f : R™ — RR®. Here, we only need
networks with one output neuron which realize a nonlin-

ear function .
(x) =Y wj¢;(x) (13)
j=1

with x € R", w; denoting the weights of the network and
¢;(x) being a radial basis function, such as the Gaussian
function defined by
ey
pi(x)=e % (14)

c; represents the prototype of the Gaussian function and
o; its standard deviation. The Gaussian function pro-
vides a nonlinear transformation of samples into the so-
called feature space. When used for classification, these
networks aim at separating different classes in the fea-
ture space by means of hyperplanes (linear separation).
That is, if they were applied to time series classification
task (e.g., online signature verification) temporal patterns
within the time series, such as characteristic sequences of
motifs in the signature of a person, are not considered.
But these networks can be extended to show dynamic in-
stead of static system behavior (so-called Dynamic RBF
networks). Therefor, the products w;¢;(x) are replaced
by FIR filters (finite impulse response filters) [7]. Given a
multivariate time series T = (tq, ..., ty), such Dynamic
RBF networks (DRBF) are defined by

u del—1

tros) =3 >

j=1 =0

“ 0 (tpos—i) 15)

with pos € {del, ..., N} and maximum delay del € IN.

If such a DRBF is used for the classification of a
time series T, from which a sequence of motif candidates
MCS(T) has been extracted, every motif candidate of
the sequence is compared to the prototypes of all radial
basis functions, determining the similarity of the motif
candidates to the stored motifs (i.e., prototypes that have
been determined by means of training data as described
before). Then, the temporal relationship of these similar-
ities is evaluated by the FIR filters. Mathematically, the
sequence of motif candidates M CS(T) of a time series
T is processed by a DRBF with

u del—1
J(MCpos(T Z Z w ;e (MCpos—i(T))
j=1 =0
(16)
with
D (MCg;, MChpos—i(T))
pab —Ww - ]
(ZS] 7€b(]\4C(pos z( )) =€ %
a7
andw € RY.
We are given a binary time series classification
task L = {Ti>yi}a i = .k with T, =
(tl,...,tNi), N; € Nand y; € {—‘rl,—l}. For the

training of the DRBF, a two-stage method similar to the
one described in [4] is used. In the first stage a se-
quence of motif candidates is extracted from every time
series T';, which is then used to determine the prototypes
and the radii of the radial basis functions. Therefor, the
described clustering method is used with a number of

= |MCS| - NMF (NMF € ]0,1]) clusters according
to the number of radial basis functions to determine the
prototypes M Cc;. Furthermore, with this clustering the
radii o; are computed by the maximal distance of a cluster
prototype to all other members of the same cluster C;.

In stage two, the coefficients w](?’) are computed by
solving a linear least-squares problem. The coefficients



are then optimal (in a least-squares sense) with respect to
the selected prototypes and radii. Details concerning the
solution of this problem can be found in [4].

Finally, a threshold has to be computed that can be
used to assign a class label +1 or —1 to a given time se-
ries. Therefor, the means of the output sequences of the
MCS(T;) of all T; in the training data are determined by

1 [MCS(T)]
= MCpos(Ty)).
HT = IMCS(T,)] — del + 1 po;del F(MCpos(T2))
(18)
The threshold 6 is then defined by
0= ) i . — | -thf
W:rilizl{l prs {wg}l—nﬂ pr \ﬁ:yia:XA MT’} ’
(19)
with a user specified threshold factor thfe R™.
After the training, a test time series T = (t1,...,tn)

with a sequence of motif candidates M CS(T) is classi-
fied by +1 if ur > 6 and —1 otherwise.

4 Experimental Results

The Biometric Smart Pen BiSP (see [13] for details)
is a novel ballpoint pen for the acquisition of biometri-
cal features based on handwriting movements which does
not need a specific writing pad. For the verification of
individuals by means of handwritten signatures the pen
is equipped with sensors which measure the dynamics of
pressure on the refill in three dimensions and the finger
kinematics by means of tilt angles of the pen at a sam-
pling rate of 500 Hz (see Fig. 4 for a sample signature
recorded with the BiSP).
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Figure 4. Pressure Change of a Sample Signature

For our experiments, signatures of 65 persons have
been recorded with the BiSP. These 65 persons can be di-
vided into two groups. The 29 persons of group A signed
12 times in two sessions on different days (6 signatures
per session). The remaining 36 persons of group B signed
6 times in only one single session.

For every person of group A a reference model has
been created with the algorithm presented in Section 3.
The user-defined parameters used for model creation are
set out in Table 1. These parameters have been found em-
pirically. The person-specific constraints @y, Gmq, and
bmin, bmaz Of the distance measure D?°_ are computed

heuristically using the training set £ (see [8] for details).

For training purposes, a varying number of originals (3
to 7) and random forgeries (35 to 60) is used. As random

Table 1. User-defined parameters for model creation

[ parameter [ value |
R 1.09
MAX_MOTIF_LENGTH 100
del 4
w 0.1
NMF' 0.2

forgeries, randomly selected signatures of the remaining
64 persons are taken. For testing, all left genuine signa-
tures of the trained person (i.e., 9 to 5 originals) and 2
randomly selected signatures of each of the remaining 64
persons (i.e., 128 random forgeries) are taken. It should be
noticed, that the signature sets used for training and test-
ing are disjoint and this experiment was repeated 10 times
to obtain statistically significant results.

Table 2. EERs with different numbers of originals and
random forgeries used for training

o= o [ [ [ [ 7]

# forgeries
35 3.44% | 3.07% [ 2.44% [ 2.19% | 2.13%
40 3.56% | 2.55% [ 2.32% [ 2.12% | 1.75%
45 2.94% | 2.44% [ 2.32% [ 1.82% | 1.75%
50 3.19% 1 2.25% [ 1.93% [ 1.69% | 1.93%
55 2.69% [2.19% [1.94% | 1.69% [ 1.25%
60 2.75% | 2.38% | 1.56% | 1.45% | 1.32%

The resulting equal error rates (EER) of this experi-
ment are set out in Table 2. It can be seen, that the EER
is dropping with an increasing number of genuine signa-
tures used for training. This means, that the verification
of a person’s identity becomes more reliable if more gen-
uine signatures are provided for model creation. Another
interesting aspect is the decrease of the EER if the number
of random forgeries used for training is increased. A large
number of random forgeries is easier to obtain than a large
number of genuine signatures, because signatures of other
persons stored in the database can be used as random forg-
eries. This means, that a more reliable verification model
can be created just using more random forgeries. Table
2 shows for example, that with 5 genuine signatures and
35 random forgeries, an EER of 2.44% is achieved. If the
number of random forgeries is increased to 60, the EER is
dropping from 2.44% to 1.56%.

In a nutshell, a number of 5 genuine signatures and
60 random forgeries used for training seems to be a good
compromise between a reliable authentication and a rea-
sonable effort for the registering person.

Fig. 5 shows the false rejection rate (FRR) and the
false acceptance rate (FAR) depending on the threshold
factor thf. If one is looking for a more secure system,
thf has to be increased. If the verification system should
be more comfortable for the users, a lower FRR has to be
provided, which can be achieved by decreasing thf.

5 Conclusion and Outlook

In this article, a new time series classification method
based on time series motifs and dynamic radial basis func-
tion networks has been presented. The new algorithm has
been applied to online signature verification. The experi-
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Figure 5. FAR and FRR depending on thf
ments showed, that the new algorithm is capable of a re-
liable authentication with equal error rates of 1.32% de-
pending on the number of originals and random forgeries
used for training.

Compared to our previous approach [11] to online
signature verification based on Support Vector Machines
(SVM), the method proposed here yields slightly higher
error rates with 7 genuine signatures used for training.
However, the presented algorithm yields much better au-
thentication rates with a number of originals less than 7.
Even with 3 genuine signatures used for training, the EER
is still at an acceptable level.

In our future work, we want to evaluate the proposed
method with skilled forgeries as well. Furthermore, we
are integrating the presented algorithm into a software
framework for online signature verification [12] and eval-
uate its performance in an ensemble of different classifica-
tion methods. We also will apply the proposed algorithm
to other time series classification tasks.
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