An Innovative Approach to Intelligent Information Filtering

Randa Kassab 1 Jean-Charles Lamirel 1
1 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Information filtering is one of the most useful and challenging tasks for effective information access. It is concerned with dynamically adapting the distribution of information where both evolving user's interests and new incoming information are taken into account. In this paper, we present an innovative approach to text filtering based on the novelty detection principle. This approach relies on a specific learning model which allows both accurate online learning of user's profile and evaluation of the coherency of user's behaviour during his interaction with the system. We empirically analyse our approach and present experimental results on the Reuters-21578 benchmark. The obtained results bring out a significant enhancement of performance as compared to the widely used Rocchio's learning algorithm.
Type de document :
Communication dans un congrès
The 21st Annual ACM Symposium on Applied Computing - SAC-IAR 2006, Apr 2006, Dijon, France. pp.1089-1093, 2006
Liste complète des métadonnées

https://hal.inria.fr/inria-00104542
Contributeur : Randa Kassab <>
Soumis le : vendredi 6 octobre 2006 - 18:27:51
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48

Identifiants

  • HAL Id : inria-00104542, version 1

Collections

Citation

Randa Kassab, Jean-Charles Lamirel. An Innovative Approach to Intelligent Information Filtering. The 21st Annual ACM Symposium on Applied Computing - SAC-IAR 2006, Apr 2006, Dijon, France. pp.1089-1093, 2006. 〈inria-00104542〉

Partager

Métriques

Consultations de la notice

188