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Abstrat: The urrent IEEE 802.11 standard does not address the basi requirementsof multiast ommuniation. More spei�ally, multiast pakets are sent in an open-loopfashion as broadast pakets, i.e., without any aknowledgements. This basi multiasttransmission mehanism prevents the implementation of ongestion ontrol, transmissionreliability, and physial data rate adaptation algorithms. In this paper, we propose newmehanisms based on the leader based approah to enhane the legay multiast transmis-sion sheme in WLANs. We fous on pratial solutions that an be deployed in urrent andfuture WiFi devies and are ompatible with legay 802.11 devies. We propose two meh-anisms to adapt the PHY data rate of multiast �ows: the simplest leader-based mehanism(LB-ARF) and the Robust Rate Adaptive Multiast mehanism (RRAM). Our simulationsshow that for stati environments, LB-ARF and RRAM an ahieve high multiast through-put and fairness between the set of multiast reeivers. LB-ARF is su�ient to outperformthe legay multiast mehanism when the stations are �xed. RRAM improves the reliabilityof the multiast transmission and obtains high throughput independently of the number ofmultiast reeivers and the maximal speed of stations.Key-words: IEEE 802.11, leader-based approah, multiast transmission, PHY rate adap-tation



Méanismes de Transmission Multipointpour Réseaux Loaux Sans Fil IEEE 802.11Résumé : Le standard IEEE 802.11 est ine�ae pour la transmission multimédia enmultipoint. En partiulier, les paquets multipoints sont envoyés en boule ouverte de lamême manière que les paquets broadast. L'absene d'aquittements rend impossible lamise en ÷uvre de méanismes de ontr�le de ongestion, de méanisme de �abilisation dela transmission ainsi que d'algorithmes d'adaptation du débit de transmission physique.Dans e rapport, nous proposons de nouveaux méanismes de transmission multipoint quise basent sur une approhe leader pour renvoyer des aquittements. Nous nous interessonsà des solutions pratiques qui sont sueptibles d'être implantés dans les artes réseaux sans�l atuelles et futures et qui restent ompatibles ave les stations IEEE 802.11 standards.Nous proposons deux méanismes pour adapter le débit de transmission physique des �otsmultipoints: un méanisme simpli�é appelé LB-ARF et un méanisme plus robuste appeléRRAM. Nos simulations montrent que pour des environnements statiques, un méanismeaussi simple que LB-ARF su�t pour obtenir de bonnes performanes. Le méanisme RRAMest quant à lui aussi e�ae dans des environnements statiques que lorsque les stations sontmobiles.Mots-lés : IEEE 802.11, algorithmes d'adaptation du débit de transmission physique,transmission multipoint



Pratial Multiast Shemes for IEEE 802.11 31 IntrodutionThe IEEE 802.11 protool suite aka WiFi is very popular today beause it represents aost e�etive solution to provide relatively high bandwidth onnetivity to wireless LANs(WLANs). Most of today's urrent personal digital assistants (PDAs) and laptops have bydefault a WiFi interfae. Moore's law and advanes in multimedia ommuniation tehniques(e.g., ompression) make these devies inreasingly more apable of handling live multimediaappliations. As hot spots beome more ubiquitous, people on the move will be able to usetheir wireless devies (PDAs, ell phones, et) to reeive multimedia data (e.g., wath livebroadasts of news, presentations, et).It is well known that multiasting �ows instead of streaming them individually results in amuh more e�ient use of the shared wireless medium. Whereas all these new appliationsare very likely to appear soon with upoming WiMAX or DVB-H enabled devies, theIEEE 802.11 standard does not address multiast data requirements [20℄. In partiular,the urrent 802.11 standard sends multiast pakets similarly to broadast pakets, i.e.,without aknowledgements. This basi multiast transmission mehanism poses three mainproblems, whih are desribed below.The most ritial one is the fat that, without any feedbak mehanism, ongestionontrol is not possible for multiast �ows resulting in unfairness with other onurrent uniast�ows. In IEEE 802.11, uniast �ows use the DCF aess sheme, where ontention windows(CW) hange dynamially to adapt to the ontention level: Upon eah ollision, a nodedoubles its CW to redue further ollision risks. Upon a suessful transmission, the CWis reset, assuming that the ontention level has dropped. Without feedbak, multiast �owsare not able to adapt their ontention window aording to the network state. Consequently,they an not only starve onurrent uniast �ows but also severely ongest the network.The seond problem onerns transmission reliability. Although multimedia appliationsan tolerate a ertain perentage of paket loss, their performane may degrade severely inthe presene of persistent transmission errors or high hannel load. Indeed, ontrary to uni-ast transmissions, no MAC retransmission mehanism is provided for multiast. Corruptedframes (due to transmission errors or ollisions) are simply dropped.The third problem deals with physial data rate seletion. To ahieve high performaneunder varying hannel onditions, IEEE 802.11 devies adapt their PHY transmission ratedynamially. Several mehanisms have been proposed in the literature suh as RBAR [10℄or CLARA [21℄ or the ommerial ARF [8℄ protool. But these mehanisms are not us-able with the urrent open-loop multiast transmission protool. Indeed, most ommerialaess points (APs) to-date use a �xed and relatively very low transmission rate for multi-ast transmissions. Suh a ase exhibits the 802.11 anomaly [16℄, and the performane ofother uniast stations is seriously degraded as the multiast tra� overwhelms the wirelessbandwidth due to the �xed and low data rate [20℄.As disussed in the following setion, several solutions have been proposed reently tosolve these problems, but none of them an atually be used today beause of implementationissues or ompatibility problems with legay 802.11 devies. In this paper, we fous onpratial solutions that an be adopted by urrent and future 802.11 devies.RR n° 5993



4 Seok & TurlettiThe remainder of this paper is organized as follows. In Setion 2, we present a review ofsolutions proposed so far to enhane the 802.11 multiast transmission mehanism and wedisuss implementation issues of solutions. Setion III and Setion IV desribe our solutionsomposed of a leader eletion protool and two multiast PHY rate adaptation algorithms.Espeially, in Setion 4.1, we desribe the simplest solution that ould be used with urrentdevies in stati environments. Then we desribe in Setion 4.2 the proposed Robust RateAdaptive Multiast mehanism (RRAM) whih aims to provide an e�ient solution formobile 802.11 environments and dynami hannel onditions. In Setion 5, we evaluate theperformane of RRAM against the urrent IEEE 802.11 multiast transmission protool.Finally, we onlude in Setion 6 and present diretions for future work.2 Related work and DisussionOne of the alternatives to improve the urrent 802.11 multiast mehanism for reliabletransmissions is the leader-based reliable multiast sheme [15℄. In a nutshell, this solutionproposes to selet one of the reeivers to send aknowledgement frames bak to the sender.To transmit a multiast frame, the AP �rst sends a non-standard multiast-RTS frame.If a leader is ready to reeive the multiast frame, it replies with a CTS frame. Otherstations send a non-standard NCTS (Not Clear to Send) frame if they are not ready toreeive the multiast frame. In other ases, the leader and other stations do not send anyframe. If the AP hears a CTS from the leader, it starts a multiast transmission. Else, itperforms a bako� to retransmit the multiast frame. Upon reeiving the multiast frame,if the leader reeives it without error, it sends an ACK frame. Otherwise, the leader andother stations send a non-standard negative aknowledgment (NAK) frame. As with regularuniast transmissions, the multiast sender an use a PHY rate seletion mehanism suh asARF [8℄ and lost frames an be retransmitted as it is the ase for uniast �ows. Furthermore,the leader-based approah provides fairness with other onurrent uniast �ows beause thesame algorithm also adjusts the ontention window aording to the pereived ongestiononditions.Another approah to solving the problem of lak of ongestion ontrol, proposed byChoi et al, dynamially adapts the ontention window for multiast frames aording to thenumber of ompeting stations in the wireless LAN [12℄. However, this solution does notimprove transmission reliability and still uses a �xed PHY data rate.In [11℄, Villalon et al. have proposed a solution, alled auto rate seletion mehanism(ARSM), to solve the three problems identi�ed for the IEEE 802.11 multiast mehanism.Basially, ARSM dynamially selets the multiast PHY rate based on hannel onditionspereived by the reeiving stations. In order to redue the rate of feedbak ollision, ARSMuses the SNR value of the station to deide when the feedbak frame is transmitted. Thestation with the worst SNR has the highest priority to send its feedbak frame. Then, theAP an selet the station with the lowest SNR value as the leader. The main �aw of theARSM mehanism is that it uses new ontrol frames for the feedbak mehanism whihmakes it inompatible with urrent 802.11 stations. INRIA



Pratial Multiast Shemes for IEEE 802.11 5The easiest way to solve the three problems identi�ed with the urrent 802.11 stan-dard's multiast mehanism is to emulate uniast transmission using a leader-based ap-proah, whih, in a nutshell, means that one of the reeiving stations is responsible to sendaknowledgements on behalf of the intended reeiving stations. This feedbak is used totrigger possible retransmissions, adapt the ontention window, and selet the PHY datarate. Our possible leader seletion poliy is to hoose the reeiver with the worst hannelonditions. However, the overhead assoiated with leader eletion inreases with the num-ber of multiast reeiving stations, so, it is not e�ient to hoose a new leader for eah newtransmission. On the other hand, the algorithm to selet the PHY data rate requires per-paket feedbak. The fat that these algorithms run at two di�erent timesales an ausesituations where the urrent leader does not orrespond to the reeiver whih experimentsthe worst hannel onditions. In partiular, for a simple PHY rate seletion algorithm suhas ARF [8℄ used in ombination with a leader-based mehanism, when the leader deidesto inrement the PHY rate, it is not guaranteed that other reeivers an a�ord the rateinrement. In extreme ases, some reeivers an even beome disonneted from the datasession. A way to prevent suh a problem is to allow feedbak from any reeivers beforetaking ritial deisions suh as rate inrease.It is important to note that the PHY data rate seletion algorithm supplements theleader seletion mehanism beause it enhanes transmission reliability even when the ur-rent leader does not orrespond to the worst reeiver in the group. Two di�erent typesof statistis an be used to selet the PHY data rate: statistis on previous pakets sent(used by ARF [8℄/AARF [9℄) or SINR statistis (used by RBAR [10℄, CLARA [21℄). Thereare pros/ons for both approahes. The main problem with ARF/AARF is that they arenot as reative than SINR-based solutions and may generate bad experiments or periodilosses. On the other hand, SINR-based solutions an be devie-dependent, and the SINRinformation may sometimes be impreise. The mehanisms proposed in this paper onsiderboth approahes.It is also important to propose solutions that do not use negative aknowledgement(NAK) frames like the leader-based reliable multiast sheme [15℄ beause they have im-portant implementation issues. In partiular, the deision to send NAK frames has to beimmediate (and sometimes wired in the hardware).In this paper, we fous on pratial solutions that try to limit implementation issues andkeep ompatible with legay IEEE 802.11 devies. Leader-based mehanisms are omposedof two main algorithms, that selet the leader and selet the PHY data rate. We �rstdesribe the leader eletion protool in Setion 3 whih will be used by the multiast PHYrate adaptation mehanisms in Setion 4.3 Leader Eletion ProtoolThe proposed Leader Eletion Protool (LEP) dynamially selets the reeiving station withthe worst urrent hannel onditions as the leader. The LEP mehanism is based on IGMPand onsists of the following four phases.RR n° 5993



6 Seok & TurlettiFigure 1: Modi�ed IGMP format (for MR and GSQ).3.1 Colletion PhaseTo selet the leader, LEP needs to estimate the hannel onditions of eah multiast reeiver.To this end, multiast reeivers periodially send modi�ed IGMP Membership Reports (MR)that inlude the SINR indiation (7 bits) within the MRT1 �eld, see Figure 1. The dupliatedbit (D bit) reserved for the leader reeletion is reset to 0.When the AP reeives an IGMP Membership Report with a non-zero MRT, it assumesthat the station supports the LEP mehanism. Then, the AP stores the multiast groupaddress, the MAC address and the SINR of the station.3.2 Eletion PhaseWhenever reeving an IGMP Membership Reports, the AP hooses the station with thelowest SINR. If the urrent leader is not the worst station, the AP sends a modi�ed IGMPGroup Spei� Query (GSQ) whih inludes the SINR of the seleted worst station withinMRT �eld. If more than one stations have the same lowest SINR value, the AP sets thedupliated bit to 1. Otherwise the dupliated bit is set to 0. The dupliated bit orrespondsto the D bit of Figure 1.One reeving IGMP Group Spei� Query, eah mobile station heks the soure IPaddress of the IGMP Group Spei� Query. If the soure IP address does not orrespondto the AP, the paket is onsidered as a legay IGMP Group Spei� Query oming fromthe multiast routers. So, eah multiast reeiver sends the legay IGMP MembershipReport after some delay time. Otherwise, eah mobile station arries out the following
Confirmation Phase.3.3 Con�rmation PhaseThrough the MRT �eld of the IGMP Group Spei� Query, eah multiast reeiver anknow the previous SINR of the new eleted leader. So, eah multiast reeiver ompares thereported SINR during the Collection Phase with the SINR of new eleted leader. Then,the multiast reeiver having the same SINR does the followings aording to the dupliatedbit.� Dupliated bit == 0 : send the additional IGMP Membership report with sameSINR to on�rm the leader eletion. The dupliated bit of the IGMP MembershipReport is reset to 0.1MRT spei�es the maximum allowed time before sending a responding report but is meaningful only inan IGMP Membership Query message sent by a multiast router. In other messages, the MRT is set to 0by a sender and ignored by reeivers. INRIA



Pratial Multiast Shemes for IEEE 802.11 7� Dupliated bit == 1 : send the additional IGMP Membership report with therandom number instead of same SINR to arry out the Reelection Phase. Dupliatedbit of the IGMP Membership Report is set to 1.Finally, if the AP reeives the IGMP Membership Report with same SINR value, thenthe AP terminates the leader eletion algorithm.Else if the AP does not reeive the IGMP Membership Report, the AP will retransmitthe IGMP Group Spei� Query with the on�rmation. Otherwise, the AP will try the
Reelection Phase. This on�rmation phase is very important. Beause the IGMP GroupSpei� Query is simply broadasted without any aknowledgement.3.4 Reeletion PhaseIf the AP reeives the IGMP Membership Report of whih the dupliated bit is set to 1,it does not hange the SINR statisti about this station beause this IGMP MembershipReport is just used for the leader reeletion. Then, the AP sends the additional IGMPGroup Spei� Query. However, the MRT �eld of IGMP Group Spei� Query is equal toone of previously reeived IGMP Membership Report (i.e., the random number hoosed bystation). The dupliated bit of this Group Spei� Query is set to 0.4 Multiast PHY Rate Adaptation MehanismIn this setion, we propose two PHY rate adaptation mehanisms, LB-ARF and RRAMboth of whih work in tandem with LEP.4.1 LB-ARFFirst we propose the simplest leader-based mehanism (or LB-ARF) for rate-adaptive mul-tiast. In LB-ARF, the leader eleted by LEP sends an aknowledgement frame to the APone a multiast frame has been suessfully reeived.Then, the AP ontrols the multiast PHY rate similarly to ARF. When the timer expiresor one 10 onseutive ACKs are reeived, the multiast PHY transmission rate is inreasedto the next higher rate and the timer is reset. When losses our, after two onseutive lostframes, the PHY transmission rate is deremented and the timer is restarted.If the worst station is always eleted as the leader, LB-ARF an provide throughputfairness between multiast reeivers but also ahieves high multiast throughput. However,LB-ARF is not appropriate for mobile environments. Beause the hannel onditions of thereeivers are hanging quikly.4.2 RRAMThe Robust rate adaptive multiast mehanism (RRAM) aims to extend LB-ARF targetingdynami environments (e.g., due to mobility).RR n° 5993



8 Seok & Turletti
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Figure 2: New Sequene Number �eld in multiast frame.As we mentioned in Setion 2, it is important to allow feedbak from any reeivers beforetaking ritial deisions suh as rate inrease beause the leader may not have the worsthannel onditions at this time. So, RRAM requires a mehanism to inform all reeiversthat the leader is about to inrease the PHY transmission rate.To this end, RRAM requires a minor modi�ation in the MAC header of multiast dataframes. The 802.11 MAC header ontains a 16-bit �eld alled Sequence Control �eld whihis omposed of two sub�elds: Sequence Number and Fragment Number. These sub�eldsare used for retransmission and fragmentation only in point-to-point transmissions.Therefore, in RRAM we propose to use the Sequence Control �eld to inform multiast re-eivers that the leader is about to inrease the PHY transmission rate. As shown in Figure 2,a new 3-bit �eld termed Target Probe Rate (TPR) is added and the Sequence Number�eld is enoded in 9 bits in the multiast ase. The TPR �eld will enode the value of thePHY transmission rate that the leader wants to enfore. Sine the length of the TPR �eldis 3 bits, 8 di�erent PHY transmission rates an be supported.So, when multiast reeivers reeive data frames with a TPR value larger than ur-rent PHY transmission rate, they an dedue that the leader requires a PHY rate inrease.In this ase, eah multiast reeiver has to hek if its urrent SINR value is ompatiblewith the TPR rate. Table 1 shows an example of the minimal (or target) SINRs for us-ing eah PHY rate based for the Atheros hipset [24℄. In ase the urrent SINR value isless than the target SINR, the multiast reeiver has to aknowledge the next reeivingdata frame. Then, a ACK ollision will our with the leader, and the AP will use the
ClearChannelAssessment(CCA) funtion to realize that the PHY rate inrease is inom-patible with some of the reeivers in the multiast group.

INRIA



Pratial Multiast Shemes for IEEE 802.11 9Table 1: target SINRs for using TPR in IEEE 802.11a.TPR target SINR (dB)54 Mbps 24.5648 Mbps 24.0536 Mbps 18.8024 Mbps 17.0418 Mbps 10.7912 Mbps 9.039 Mbps 7.786 Mbps 6.024.2.1 PHY Rate Adaptation MehanismThe PHY rate adaptation mehanism of RRAM utilizes the state mahine shown in Figure3. In this Figure, solid lines represent the suessful transmissions, dashed lines representfailed transmissions; min and max stand for the minimum PHY rate and the maximumPHY rate, respetively. Remark that this state mahine is implemented in the MAC layerof the AP.� Initial StateIn the initial state, the AP hooses the multiast PHY rate aording to the SINRof the new leader. Funtion F (SINR) returns the highest PHY rate satisfying thefollowing ondition. The SINR should be larger than target SINR for using the hoosedPHY rate.� Suess StatesIn ase of suessful transmission, the AP ounts the number of onseutive suessfultransmission. S(i) stands for the ith onseutive suessful transmissions.However, after the state S(7), the following state is deided aording to the SINR ofthe ACK frame reeived in the AP. If the reeived SINR of this ACK frame is higherthan the target SINR for using the next higher PHY rate, the state is kept unhanged,
S(8). Otherwise, the state remains at the urrent state, S(7).In the state S(8), the AP probes the hannel onditions of non-leader stations toinrease the multiast PHY rate. This hannel probe operation onsists of two phases.First, the AP inreases the TPR value to the next higher PHY rate as shown in S(8).Seond, the AP transmits the multiast frame and waits for the ACK frame. Thisorresponds to the state S(9). Other stations exept the Leader ompare the SINRwith the target SINR for using the TPR. If the SINR of some stations is less than

RR n° 5993



10 Seok & Turlettithe target SINR, these stations also temporally beome Leaders for this multiasttransmission. Consequently, a ACK ollision from several leaders an our.So, if the AP orretly reeives the ACK frame, it means that the SINR of otherstations are larger than the target SINR for using next higher PHY rate.In the state S(10), the AP inreases both the multiast PHY rate and TPR for probingthe hannel onditions of the leader. It is similar to the legay ARF mehanism beausethe PHY rate in ARF is inreased after 10 onseutive suessful transmissions.Finally, in the state S(1), if the multiast PHY rate reahes the maximum PHY rate,the state is kept unhanged.� Failure StatesIn ase of the transmission failures, the AP also ounts the number of onseutivetransmission failures. F (1) and F (2) stand for 1 and 2 onseutive failed transmissions,exept for the state S(10). In the state S(10), one the multiast transmission is failed,it immediately triggers a PHY rate derease proedure.As with ARF, two onseutive failed multiast transmissions triggers a PHY ratederease proedure. Espeially, in the state S(10), if the next multiast transmissionfails, the state is hanged to F (2) and the multiast PHY rate is immediately dereased.Finally, in the state F (1), if the multiast PHY rate reahes the minimum PHY rate,the state is kept unhanged.4.2.2 Implementation IssuesFirst, stations need to know whether the urrently assoiated AP supports the RRAMmehanism or not. On this purpose, eah multiast reeiver heks the duration �eld ofthe multiast frame. In the IEEE 802.11 MAC protool, the duration �eld of the multiastframe is set to 0. If the duration �eld for the multiast frame is not equal to 0, this meansthat the AP supports RRAM.Seond, to implement RRAM, leader stations should turn on the aknowledgement fun-tion for multiast frames. But, most of IEEE 802.11 network interfae ard do not allow tosend ACK frames for multiast frames. However, suh an option ould be easily integratedinto the upoming IEEE 802.11n standard [6℄.5 Performane EvaluationWe evaluate the performane of LB-ARF and RRAM with an extended version of theNS-2 Simulator [22℄2. First, in Setion 5.1, we study the reliability problem and the2Simulation odes and sripts are available at the following URL: http://www-sop.inria.fr/planete/software/.
INRIA
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Figure 3: State transition diagram for multiast transmission rate adaptation.
congestion control problem of the multiast transmission as the number of multiast re-eivers inreases, with a stati environment senario. Then, we ompare the physial datarate seletion mehanism of legay IEEE 802.11a, LB-ARF and RRAM, with a stati en-vironment senario. Seond, in Setion 5.2, we ompare the performane of legay IEEE802.11a, LB-ARF and RRAM, in a mobile environment. Espeially, we analyze the multiastthroughput, paket loss rate and multiast rate as the maximum speed of reeivers inreases.Futhermore to study the salability of eah mehanism, we arry out the simulations witha varying number of multiast reeivers, from 5 stations to 25 stations.Eah mobile station is operated in IEEE 802.11a infrastruture mode. In order to supportIEEE 802.11a protool, we use the enhaned IEEE 802.11a NS-2 module [23℄ that omprisesthe following new features,(a) BER-based PHY layer model : In the PHY layer, the paket error rate is determinedby the BER and the frame length. In order to ompute the BER, the PHY layer modelreords SINR variations during a frame reeption. After reeiving the frame, the PHY layermodel an ompute a more exat BER value even though it requires a high omputationomplexity beause the BER is reomputed whenever the SINR is hanged.(b) IEEE 802.11a multi-rate : IEEE 802.11a supports 8 di�erent physial data rates,6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps and 54Mbps.
RR n° 5993



12 Seok & Turletti(d) ARF and AARF [9℄ rate adaptation mehanisms : ARF is a well-known rate adap-tation mehanism for point-to-point onnetion. Adaptive Auto Rate Fallbak (AARF) isan extended mehanism of ARF that improves upon ARF to provide both short-term andlong-term adaptation.To simulate indoor o�e environments, we use a log-distane path-loss model with thepath-loss exponent of three [13℄. Additionally, in order to onsider multipath fading e�et,we use the Riean propagation model [14℄. When there is a dominant stationary signal om-ponent present, suh as with line-of-sight propagation path, the small-sale fading envelopehas a Riean distribution.5.1 Stati Senarios5.1.1 Salability IssuesA group is omposed of �ve multiast reeivers. The number of uniast stations inreasesfrom 1 to 20 stations. All stations are loated near the AP (i.e., 10 m). But, we turn o�the rate adaptation mehanism of LB-ARF and RRAM, so the multiast transmission rateof eah mehanism is �xed to 6Mbps.
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Pratial Multiast Shemes for IEEE 802.11 13the multiast throughput. However, by enabling the binary exponential bako� mehanismfor multiast transmissions, LB-ARF and RRAM are both fair between uniast and multiast�ows.5.1.2 Wireless Channel Fading IssueWe ompare the performane of the IEEE 802.11a legay multiast, LB-ARF and RRAM,aording to the distane between the AP and the multiast reeivers. On this purpose,Five stations join the multiast group. Initially, the multiast reeivers are loated to 10meters away from the AP (with an exellent hannel quality), and only one of the 5 stationsis loated between 0 and 160 meters from AP.Two uniast stations generate a saturated bakground tra�. These uniast stations arealso loated near the AP. We measure the average throughput of the best multiast reeiverand the worst multiast reeiver that have the best hannel onditions and the worst hannelonditions respetively. Although we measure the average throughput of the uniast stations,we do not show the results beause the results are very similar to the throughput of the bestmultiast reeiver.We use the Riean hannel model in order to take into aount the multipath fadinge�et. In Figures 5 (a) and (b), we ompare the IEEE 802.11a protool with both solutions,respetively LB-ARF and RRAM. The IEEE 802.11a protool has the lowest throughput forthe multiast onnetion. When the distane between the worst reeiver and the AP is largerthan 100 meters, the worst reeiver experienes some wireless hannel errors. Although themultiast transmission of IEEE 802.11a uses the lowest PHY rate, some frames are lostbeause there is no retransmission mehanism for multiast.
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14 Seok & Turlettithe multiast transmission rate aording to the hannel onditions of the worst multiastreeiver. In Figure 5 (b), when using RRAM, the worst multiast reeiver and the bestmultiast reeiver also obtain similar throughput than LB-ARF.
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 0

 2

 4

 6

 8

 10

 12

 0.1  1  2  3  4  5

T
hr

ou
gh

pu
t (

M
bp

s)

Max Speed (m/s)

Throughputs Comparision between IEEE 802.11a (6Mbps) and LB-ARF

Best Multicast Receiver (IEEE 802.11a)
Worst Multicast Receiver (IEEE 802.11a)

Best Multicast Receiver (LB-ARF)
Worst Multicast Receiver (LB-ARF)

 0

 2

 4

 6

 8

 10

 12

 0.1  1  2  3  4  5

T
hr

ou
gh

pu
t (

M
bp

s)

Max Speed (m/s)

Throughputs Comparision between IEEE 802.11a (6Mbps) and RRAM

Best Multicast Receiver (IEEE 802.11a)
Worst Multicast Receiver (IEEE 802.11a)

Best Multicast Receiver (RRAM)
Worst Multicast Receiver (RRAM)

(a) LB-ARF (b) RRAMFigure 9: Performane omparison of IEEE 802.11a, LB-ARF and RRAM.In Figures 9 (a) and (b), we ompare the IEEE 802.11a protool with both solutions,respetively LB-ARF and RRAM. As shown in Figure 9 (a), in the ase of LB-ARF, thethroughput of the worst multiast reeiver is similar than the throughput of the best mul-INRIA



Pratial Multiast Shemes for IEEE 802.11 17tiast reeiver at the very low speed suh as 0.1 m/s. However, as the speed inreases,we observe a large di�erene of throughput between the best multiast reeiver and theworst multiast reeiver. Although the number of multiast reeivers is very small, LB-ARFdoes not ahieve throughput fairness between the set of multiast reeivers. In the aseof RRAM, as shown in Figure 9 (b), the throughputs of the best multiast reeiver andthe worst multiast reeiver are similar. Espeially, even though the speed of the multiastreeivers inreases, RRAM provides high throughput fairness between the best multiast re-eiver and the worst multiast reeiver. Beause RRAM an hoose an appropriate multiasttransmission rate even when the worst station is not eleted to the leader.
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