
HAL Id: inria-00104743
https://hal.inria.fr/inria-00104743

Submitted on 9 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-Line Recognition of Handwritten Mathematical
Expressions Based on Stroke-Based Stochastic

Context-Free Grammar
Ryo Yamamoto, Shinji Sako, Takuya Nishimoto, Shigeki Sagayama

To cite this version:
Ryo Yamamoto, Shinji Sako, Takuya Nishimoto, Shigeki Sagayama. On-Line Recognition of Hand-
written Mathematical Expressions Based on Stroke-Based Stochastic Context-Free Grammar. Guy
Lorette. Tenth International Workshop on Frontiers in Handwriting Recognition, Oct 2006, La Baule
(France), Suvisoft, 2006. <inria-00104743>

https://hal.inria.fr/inria-00104743
https://hal.archives-ouvertes.fr

On-Line Recognition of Handwritten Mathematical Expressions
Based on Stroke-Based Stochastic Context-Free Grammar

Ryo Yamamoto, Shinji Sako, Takuya Nishimoto, Shigeki Sagayama
The University of Tokyo.

{ yamaryo, sako, nishi, sagayama} @hil.t.u-tokyo.ac.jp

Abstract

In this paper, we propose a new framework for on-
line handwritten mathematical expression recognition. In
this approach, we consider handwritten mathematical ex-
pressions as the output of stroke generation processes
based on a stochastic context-free grammar which gen-
erates handwritten expressions stochastically. We esti-
mate the most likely expression candidate derived from
the grammar, rather than solving one by one the three
major problems in mathematical expression recognition:
symbol segmentation/recognition, 2D structure recogni-
tion, and expression syntax analysis. With this method, we
can simultaneously recognize the symbols and structure
of an expression within the grammatical constraint. Ex-
periments revealed that this simultaneous estimation de-
creases errors in symbol segmentation and recognition,
and that these errors are reduced as grammatical restric-
tion is strengthened.

Keywords: Mathematical Expression Recognition,
Character Recognition, On-line, Handwriting, Stochastic
Model, Stochastic Context-Free Grammar

1 Introduction

There are several ways to input mathematical expres-
sions into a computer. The most common ones are to make
use of special strings such as TEX, C, or Matlab, or to use
a mathematical editor such as the one embedded in MS-
Word. But these methods require learning of the language
or difficult manipulations. Being able to input mathemati-
cal expressions by hand with a pen tablet, in the same way
as we write them on paper, would be more intuitive and
very useful in the process of writing scientific papers or
as an input method for calculation softwares. Recognition
of on-line mathematical expressions is the key problem to
solve toward the achievement of this goal.

Intensive research has already been conducted on
mathematical expression recognition [2], and most of the
existing systems solve this problem in three steps: a sym-
bol segmentation/recognition step, a 2D structure recog-
nition step, and an expression syntax analysis step. In the
symbol segmentation/recognition step, the input stroke se-
quence is segmented and each segment is recognized as a
mathematical symbol. This problem can be treated as the

recognition of a character sequence. Existing character
recognition methods are used here. In the 2D structure
recognition step, the 2D structure among recognized sym-
bols, for example the fact that a symbol is placed in the
“right” or “upper right” of (in other words, on the “same
or upper baseline” with regard to) another, is among rec-
ognized symbols is recognized. The 2D structure is an
indispensable information in expression recognition, and
approaches using a 2D grammar such as a graph gram-
mar [4] or using rule-based analysis [3] have been pro-
posed. In the expression syntax analysis step, the 2D
structure of the expression is analyzed to output TEXor
C strings. Methods proposed so far consist in transform-
ing the 2D tree into a mathematical expression grammar
tree [6], TEXstring-based parsing [1], and so on. In most
systems using rule-based structure analysis implicitly ex-
ists a mathematical expression grammar.

Symbol recognition is not easy in mathematical ex-
pressions because there are many kinds of symbols other
than alphabets: Arabic numerals, Greek symbols, paren-
theses, operators, fraction lines, root signs, commas, dots,
etc. These symbols are very simple in shape and appear in
many different sizes, making their recognition difficult.

The recognition of the 2D structure is also complex.
Spatial relationships between symbols have fluctuations
because they are written by hand. So spatial relationships
cannot easily be translated into logical structures. What is
more, mathematical symbols vary in their shape and size,
which makes the problem even more difficult.

As stated above, most of the existing methods recog-
nize symbols first, and then analyse the 2D and syntactic
structure. But it is natural to think that when a person sees
a mathematical expression, he/she recognizes the symbols
using not only their shape but also the whole 2D and syn-
tactic structure of the expression, and using such contex-
tual information enables robust recognition of symbols.

In the light of this, we handle mathematical expres-
sion recognition as a simultaneous optimization of sym-
bol segmentation, symbol recognition, and 2D structure
recognition under the restriction of a mathematical ex-
pression grammar. We model handwritten mathematical
expressions with a stochastic context-free grammar and
formulate the recognition problem as a search problem of
the most likely mathematical expression candidate, which
can be solved using the CYK algorithm.

We also propose a new 2D structure model for math-
ematical expressions using the new concept of Hidden
Writing Area (HWA) that we introduce. We model the
handwriting of a mathematical expression as the pro-
cess of stochastically placing each stroke into an imag-
inary box (HWA) which position is itself stochastically
determined according to the syntactic structure of the ex-
pression. During the recognition, the probability distri-
bution of the HWA is calculated for each stroke candi-
date, and we calculate the probabilities that the HWAs
of each stroke fit the structure derived from the syntactic
structure of the expression. This model enables symbol-
independent structure recognition and simple designing of
the mathematical expression grammar.

In section 2, we explain the details of the proposed
method, and in section 3 we present its evaluation through
recognition experiments.

2 Proposed method

2.1 Context dependency of symbol recognition

Recognition of symbols in mathematical expression
recognition is closely related to the context, i.e. 2D and
grammatical structure, of the expression.

For example Figure 1(a) and Figure 1(b) show that
symbol segmentation and symbol recognition can change
depending on the context even if the shape of the symbol
is the same. Symbol recognition is thus fundamentally
an ambiguous problem, and a human disambiguates it us-
ing the whole grammatical structure of the expression. So
evaluation of the whole grammatical structure can lead to
more robust symbol recognition, but this kind of estima-
tion cannot be done in most of the existing recognition
systems, since they recognize first the symbols and then
the structure. Our first goal is thus to solve the ambiguity
of symbol segmentation and recognition using the gram-
matical structure of the whole expression.

In the same way, Figure 1(c) gives an example of the
fact that 2D structure recognition is also dependent on
grammatical structure. Our second goal is thus to solve
this 2D structure ambiguity using the grammatical struc-
ture.

Grammatical information is sometimes not sufficient
to solve the ambiguity. In such situations, a human pos-
sibly estimates the shape of the symbols and the whole
structure of expression as a whole, simultaneously (Fig-
ure 1(d)). This simultaneous recognition of symbols and
structure cannot be done in existing systems as they sep-
arate symbol recognition step and structure analysis step.
So we also look for a recognition method which can es-
timate symbols and structure simultaneously when the
grammatical structure information is not sufficient.

2.2 Handwritten expression grammar

From this viewpoint, we extended mathematical ex-
pression grammars for handwritten expression. Expres-
sion grammars can be written in the form of context-free
grammar (CFG), and the compilers of TEX, C, Matlab, etc.

(a) (b)

(c) (d)

Figure 1 . (a) Ambiguity in symbol segmentation and
recognition can be solved using expression grammar.
The first stroke on the left should be recognized as “c”,
not “(”, while the strokes between “3” and “y” should
be recognized as “x”, not “)(”. (b) Symbol recognition
changes according to the context even if the sym-
bol’s shape is the same. The second stroke should
be recognized as “c” in the upper expression, “(” in
the lower one. (c) Ambiguity in 2D positional rela-
tionship between symbols can be solved using the
grammar. The logical relationship between “b” and
“)” is the “right” relationship, even though it would be
mis-recognized as ”lower right” without the grammar.
(d) Simultaneous estimation of symbols and 2D struc-
ture seems necessary. To decide which of “P(x|y, z)”
or “P(x1y, z)” this expression is, we estimate how the
vertical line is like “1” or “|”, and how the positional
relationship between “x” and the line is like “right” or
“lower right”, then we recognize the expression as a
whole.

use a CFG parser to parse expressions written in their own
language.

A handwritten expression grammar can be written as
shown in Table 1, taking into account the writing order
and the 2D structure of the symbols. It also includes gen-
eration rules of handwritten strokes (rule No.22 to No.25)
to generate directly handwritten strokes, since handwrit-
ten expressions are sampled as sequences of handwrit-
ten strokes (sequences of pen trajectories devided by pen-
up/down), not as sequences of symbols. For each symbol
which stroke count is 2 or more, we build stroke genera-
tion rules. We treat structure in the expression and struc-
ture in each symbol in the same way.

Though the mathematical expression grammar is it-
self deterministic, handwritten structure and shapes of
symbols are stochastic. This means, for example, that
when rule No.2 in Table 1 is applied to one “expression”
element and “expression” and “symbol” are generated,
the positional relationship between the two is stochasti-
cally determined. So when the positional relationship be-
tween the “expression” and “symbol” elements is given,
we can compute the likelihood (which we call “struc-
ture likelihood”) of the fact that these elements have been
stochastically generated using rule No.2. Generation rule
p with structural conditions is expressed in the form

p = 〈A → BC, s〉, whereA,B,C are non-terminal sym-
bols (e.g. “function”, “symbol”, etc.) of the mathemat-
ical expression grammar. Structure likelihood is then
P(B,C|A, s) and is modeled as explained in 2.5.

In the same way, when a handwritten stroke is gener-
ated from element “a” by application of rule No.25, the
shape of the handwritten stroke is determined stochasti-
cally. So, when the shape of a handwritten stroke is given,
we can compute the likelihood (called “stroke likelihood”)
of each of the stochastic generation rules for that stroke.
Handwritten stroke generation ruleq is expressed in the
form q = 〈A → α〉, whereA is a non-terminal symbol
andα a terminal symbol (= handwritten stroke) of the ex-
pression grammar. Stroke likelihood is thenP(α|A) and
can be computed using model-based character recognition
methods [5].

We can say that this likelihood is the probability of
application of the corresponding generation rule. We
thus modeled handwritten mathematical expressions with
a stochastic context-free grammar.

2.3 Formulation of the expression recognition

The mathematical expression recognition problem is
then formulated as the search problem of the most likely
expression hypothesis for the input handwritten strokes
under the grammar, that is to findX0 such that

X0 = arg max
X∈EX

P(X|H)

= arg max
X∈EX

P(H|X)P(X) (1)

' arg max
X∈EX

P(H|X).

HereP(H|X) is the probability that handwritten expres-
sion H is generated from expression hypothesisX, and
P(X) is the prior probability ofX. In this paper we
suppose equal the prior probability of all expression hy-
potheses. Expression hypothesisX is a derivation of
H by the grammarG, and X can be represented as
X = {p1, p2, . . . , pN, q1, q2, . . . , qM}, wherepn = 〈An →
BnCn, sn〉 is a generation rule with structural condition,
qm = 〈Am → αm〉 a handwritten stroke generation rule
andN,M are the number of these rules. Then Equation 1
becomes:

X0 = arg max
X∈EX

N∏

n=1

P(pn)
M∏

m=1

P(qm). (2)

This shows that mathematical expression recognition
can be formulated as the search for an expression that is
derived from the expression grammar and that maximizes
the product of all stroke likelihoods and structure likeli-
hoods. Since this method searches result within the ex-
pression grammar, it can resolve, thanks to the grammar,
the ambiguity in symbol segmentation/recognition, and
structure recognition, and by searching the most likely hy-
pothesis, it can evaluate symbols and structure as a whole,
in other words, it can resolve the ambiguity in symbol
recognition thanks to the structure.

Table 1 . Example of a basic handwritten mathemati-
cal expression grammar. Rules marked with * cannot
be applied iteratively. ** means that the writing order
of the 2 symbols can change and that the rules with
permutation of the order are included. Abbreviated
names of expression elements are as follows: EXP:
expression, SYM: symbol, FUNC: function, LINE:
fraction line, DLINE: fraction line with denominator,
NLINE: fraction line with numerator, ROOT: root sign,
ACC: accent, RPAR: right parenthesis, LPAR: left
parenthesis, XRPAR: expression with right parenthe-
sis, XLPAR: expression with left parenthesis, HS:
handwritten stroke.

No. Generation rule Logical Relationship Notes

1 EXP → SYM
2 EXP → EXP SYM Right

3 SYM → SYM EXP Upper Right *

4 SYM → SYM EXP Lower Right *

5 FUNC → FUNC EXP Upper *

6 FUNC → FUNC EXP Lower *

7 DLINE → LINE EXP Lower **

8 NLINE → LINE EXP Upper **

9 SYM → DLINE EXP Upper **

10 SYM → NLINE EXP Lower **

11 SYM → ROOT EXP Inside **

12 SYM → ACC EXP Accent * **

13 SYM → ACC SYM Accent * **

14 XRPAR → EXP RPAR Right **

15 XLPAR → EXP LPAR Left **

16 SYM → XRPAR LPAR Left **

17 SYM → XLPAR RPAR Right **

18 SYM → a | b | c | · · ·
19 FUNC → lim |∑ |max | · · ·
20 LPAR → (| [| { | · · ·
21 RPAR →) |] | } | · · ·
22 f → f1 f2 Same Symbol
23 x → x1 x2 Same Symbol

24
...

25 a → HS
26 f1 → HS
27 FranLine → HS

28
...

2.4 Search using the CYK algorithm

The search problem of the most likely derivation by
stochastic context-free grammar can be solved by the
CYK algorithm. We use this algorithm to find the most
likely expression candidate for the input handwritten ex-
pression. In this section we explain the recognition algo-
rithm on an example shown in Figure 2.

The algorithm is the following:

1. For each input handwritten stroke, stroke likelihood
of each stroke candidate is calculated. This calcu-
lation is the same as the likelihood calculation in
isolated character recognition. All the stroke can-
didates (or then best candidates, in practice) with
their likelihood for theith handwritten stroke are
written in theith diagonal element of the CYK tri-
angle matrix. In this example, the first stroke of the
input expression can be “)” and the stroke likeli-
hood for this candidate is0.2. The stroke can also

Matrix(1,1)

[RPAR]) : 0.2

x1 : 0.1

Matrix(2,2)

[RPAL] (: 0.1

x2 : 0.1

[SYM] C : 0.1

Matrix(3,3)

[SYM] y : 0.1

Matrix(4,4)

[OP] - : 0.2

+1 : 0.1

T1 : 0.1

Matrix(5,5)

[NUM] 1 : 0.2

+2 : 0.1

T2 : 0.1

Matrix(6,6)

[NUM] 2 : 0.2

[SYM] z : 0.1

Matrix(1,2)

[SYM] x : 0.005

Matrix(2,3)

[SYM] Cy : 0.005

[SYM] Cy : 0.003

[XRPAR] (y : 0.003

Matrix(3,4)

[XOP] y- : 0.01

Matrix(4,5)

[OP] + : 0.005

[SYM] T : 0.002

[NUM] -1 : 0.001

Matrix(5,6)

[NUM] 12 : 0.01

Matrix(1,3)

[SYM] xy : 0.0003

[EXP] xy : 0.0001

Matrix(2,4)

[XOP] Cy- : 0.0005

[XOP] Cy- : 0.0003

Matrix(3,5)

[XOP] y+ : 0.0001

[SYM] yT : 0.0001

[EXP] y-1 : 0.0001

Matrix(4,6)

[NUM] -12 : 0.0001

[SYM] Tz : 0.0001

Matrix(1,4)

[XOP] xy- : 0.00003

[XOP] xy- : 0.00001

Matrix(2,5)

[XOP] Cy+ : 0.00001

[EXP] CyT : 0.000005

[EXP] Cy-1 : 0.000001

Matrix(3,6)

[EXP] y+2 : 0.00001

[SYM] yTz : 0.000005

Matrix(1,5)

[XOP] xy+ : 0.000001

[XOP] xy+ : 0.0000005

[EXP] xy-1 : 0.0000001

Matrix(2,6)

[EXP] Cy+2 : 0.000001

[EXP] CyT2 : 0.0000005

[SYM] Cy-12 : 0.0000001

Matrix(1,6)

[EXP] xy+2 : 0.0000001

[SYM] xy-12 : 0.00000005

[EXP] xy+2 : 0.00000001

Figure 2 . Example of a search for most likely expres-
sion candidate using the CYK algorithm.

be the first stroke of “x” (“ x[1]”) and the likelihood
is 0.1.

2. In the (i, i + 1) element of the matrix, write all
the expression element candidates which can derive
from thei-th andi + 1-th strokes. In our example,
the first and second strokes can be derived with the
rule “〈x→ x[1]x[2], sSameSymbol〉” from “ x”. Then we
calculate the structure likelihood. It is0.5 here. The
candidate“x” and the product of stroke and struc-
ture likelihoods0.1×0.1×0.5 = 0.005 is written in
(1, 2) element of the matrix. Note that the “)” and
“(” candidates for first and second strokes cannot
be derived with any of the expression rules shown
in Table 1 and no corresponding candidate is writ-
ten.

3. In the(i, i + 2) element, all the candidates fori, i +
1, i + 2-th strokes are written in a similar way. First
we write candidates which derive from a candidate
in (i, i) and a candidate in(i + 1, i + 2), next from a
candidate in(i, i+1) and a candidate in(i+2, i+2).
For example, in(1, 3) of the matrix, “xy” can be
derived from “x” in (1, 2) and “y” in (3, 3). The
structure likelihood that “y” is in the “upper right”
of “x” is 0.6 here. Total likelihood of “xy” is the
product of the corresponding likelihoods (0.005 ×
0.1 × 0.6).

4. In the same way, in the(i, i + k) element, we write
all the candidates fori, i + 1, . . . , i + k-th strokes.
We find candidates which are derived from a candi-
date in(i, i + j) and a candidate in(i + j + 1, i + k)
for k = 0, 2, . . . , k − 1, calculate the structure like-
lihood and write the product of the likelihoods for
each candidate.

5. Finally, the most likely “EXP” candidate in the
(1,n) element of the CYK matrix is the recognition
result.

2.5 Structure model using Hidden Writing Area

To estimate the logical relationships between the
expression elements, many existing methods use their
bounding boxes [6] [3]. But since mathematical symbols
vary in size and shape, the bounding boxes are not always

sufficient to estimate the logical relationships [2]. In [6],
a method using different relationship evaluation functions
depending on symbol category is proposed, but it is re-
ported that the accuracy is not good enough because hand-
written expression have fluctuations and handwriting style
varies from person to person. Moreover, expressions in-
clude some irregular shape symbols such as dot, comma,
hat, etc. and this makes the problem more complicated. To
deal with such variance, statistical learning from a large
amount of data can be a good solution. In the follow-
ing we propose a stochastic structure model which can be
trained statistically by data.

Behind every expression elements, we assume that
there is a hidden box which is arranged according only to
the syntactic structure of the expression, independent of
symbols inside. We call that box Hidden Writing Area. A
HWA is represented by 4 parameters as shown in Figure
3(b). The probability that two expression elementsB,C
are derived from another elementA by the generation rule
p = 〈A → BC, s〉, is determined according to the corre-
sponding HWAshA, hB, hC, ands:

P(B,C|A, s) = Fs(hA, hB, hC). (3)

The probability functionsFs for each s are defined as
shown in Figure 3(a). For each logical relationships, the
relationship between HWAs is written in the simultaneous
equations ofhA, hB, hC. For some relationships like “upper
right”, positional freedom is modeled with random vari-
ablesv1

UpperRight, v
2
UpperRight included in these equations.

Each handwritten strokeα is generated stochastically
in its corresponding HWAhA. Here, while stroke “d”
tends to be generated slightly shifted toward the top of
its HWA, stroke “y” is shifted towards the bottom of its
HWA. This positional tendency is modeled using random
variabledA for each strokeA which represent the lag be-
tween the HWA and the bounding box. The probability
that a handwritten strokeα is derived from the strokeA
is determined according to the bounding box of the hand-
written strokerα, the stroke shape featuretα, hA, andA:

P(α|A) = P(rα|hA,A)P(tα|A)
= GA(rα, hA)P(tα|A). (4)

HereP(tα|A) is the stroke likelihood, which can be mod-
eled and calculated with some isolated character recogni-
tion methods. The probability functionGA is determined
in Figure 3(c). For each strokeA, the relationship between
HWA hA and the bounding boxrα is written in the simul-
taneous equations including the lag variabledA.

If we denote the bounding boxes of the input
strokes as{r1, r2, . . . , rM}, the shape feature of them as
{t1, t2, . . . , tM}, the likelihood of an expression candidate
X = {p1, p2, . . . , pN, q1, q2, . . . , qM} (wherepn = 〈An →

Bn Cn , sn〉 andqm = 〈Am → αm〉) is given by:

N∏

n=1

P(pn)
M∏

m=1

P(qn)

=
N∏

n=1

P(Bn,Cn|An, sn)
M∏

m=1

(αm|Am) (5)

=
N∏

n=1

Fsn(hAn , hBn , hCn)
M∏

m=1

GAm(hAm , rαm)P(tαm |A).

The maximum likelyhood candidate can be estimated as
described in 2.4.

The model parametersdA, vs for each A, s can be
trained iteratively as follows. We use as training data
handwritten expressions which are tagged with their cor-
rect syntactic structure. After setting initial values for the
parameters, we first estimate the most likely HWAs of ev-
ery expression element for each expression in the way de-
scribed above, and then, using these HWAs, we update
the model parametersdA, vs. These two operations are re-
peated iteratively.

We performed recognition experiments on the expres-
sion structure to estimate this structure model. This corre-
sponds to the expression recognition under the condition
that stroke recognition has already accurately been done.
Training data consists in 7 expressions written about 40
times each by one writer, for a total of 256 expressions.
Evaluation data consists in 8 expressions from IEEE arti-
cles written 10 times each by same writer as the training
data, for a total of 80 expressions. 5 expressions are com-
mon to the evaluation and training data. The reason is that
the method we propose requires every symbol in the target
domain to appear in the training expression data because
the lag variable corresponding to each stroke can only be
learned from expression training data as described above,
not from isolated character data. Thus, the symbol domain
of the training data must cover that of the evaluation data.
We shared some expressions because it is hard to design
training data to cover all symbols of evaluation data. For
the same reason, the symbol domain of this experiment is
limited to that of the training data (52 symbols, about the
same as the number of symbols used in evaluation data).

Error rate on the baseline levelEbase was 2.53% in
shared (closed),5.07% in unshared (open) set. Although
training data was quite limited, the proposed structure
model worked well. Mis-recognition typically occurred
for slanted expressions recognized as subscripts or super-
scripts. Introducing a random variablevs into “right” re-
lationship model could reduce such kind of errors. Exam-
ples of the most likely HWAs are shown in Figure 4. They
are estimated indeed as we expected.

3 Experiment

We did expression recognition experiments to see how
symbol recognition errors decrease using this method.
The evaluation and training data were the same as in 2.5.
We used 10-state left-to-right HMMs for stroke models,

lacigoL

pihsnoitaleR

s

noitcnuF ytilibaborP

Fs (hA, hB, hC)
noitazilausiV

thgiR F thgiR =
1, nehw

0, .esle

b

C

e

B

e

A

e

C

b

A

b

B

s

A

s

C

s

B

c

A

c

C

c

B

hhhhhh

hhhhhh

===

====

 , ,

, ,

hA
hChB

emaS

lobmyS
e

A

e

C

e

B

b

A

b

C

b

B

s

A

s

C

s

B

c

A

c

C

c

B

hhhhhh

hhhhhh

====

====

 ,

, ,

F lobmySemaS =
1, nehw

0, .esle hA
hChB

reppU

thgiR F thgiRreppU =
1, nehw

0, .esle Nvvvhh

vhhhhh

hhhhhhhh

s

B

s

C

s

B

c

B

c

C

b

C

e

B

e

A

e

C

b

A

b

B

s

A

s

B

c

A

c

B

212

1

,(,21

,21,

,, , ,

thgiRreppUthgiRreppUthgiRreppU

thgiRreppU

+=

−−==

====

hA

hC

hB

1

thgiRreppU
v

2

2
1

thgiRreppU
vhh

s

B

s

C
=−

(a)

��
�
��

�
��

�
�� �

�� �

�

(b)

ekortS

A
noitcnuF ytilibaborP

Gs (hA, rα)
noitazilausiV

”d“

r
α

h ”d”

1

"d"
d

2

"d"
d

3

"d"
d

4

"d"
d

Nddddd),,,(4321

"d""d""d""d""d"
=

G ”d” =
1, nehw

0, .esle

ee

A

bb

A

scs

A

c

A

scs

A

c

A

rdhrdh

rrdhh

rrdhh

αα

αα

αα

=+=+

+=++

−=+−

3

"d"

1

"d"

4

"d"

2

"d"

,

,2121

,2121

”y“ G ”y” =
ee

A

bb

A

scs

A

c

A

scs

A

c

A

rdhrdh

rrdhh

rrdhh

αα

αα

αα

=+=+

+=++

−=+−

3

"y"

1

"y"

4

"y"

2

"y"

,

,2121

,2121

x“ 1” G ”y” =
ee

A

bb

A

scs

A

c

A

scs

A

c

A

rdhrdh

rrdhh

rrdhh

αα

αα

αα

=+=+

+=++

−=+−

3

"x"

1

"x"

4

"x"

2

"x"

11

1

1

,

,2121

,2121

1x

1, nehw

0, .esle

1, nehw

0, .esle

(c)

Figure 3 . (a) Examples of the probability functions
Fs. (b) Parameters representing HWA. (c) Examples
of the probability functions GA.

Figure 4 . Examples of the most likely HWA for some
expressions.

time sequence of 4-dimensional vector of x-y coordinate
and its temporal subtraction for the feature vector. These
models were trained with the same training data. We did
experiments under 4 different mathematical grammar con-
ditions:

1. (A. NoGram) Using a structure-ignoring grammar
to recognize only symbols. This grammar only es-
timates the 2D structure within symbols, but not
between symbols, and the structure likelihood be-
tween symbols is constant. The symbol recognition
rate not using 2D and syntactical structure was eval-
uated and used as a baseline.

2. (B. Gram1) Using a smaller constraint grammar.
Just like TEXgrammar, any symbol sequence is ac-
cepted. The grammar is the one in Table 1 with
rules No.5-6, 14-17 removed.

3. (C. Gram2) Using the grammar shown in Table 1.

4. (D. Gram3) Using a more complex grammar than
Table 1. Rules about “term”, “operator”, etc. are
added.

Table 2 . Experimental results.
Error rate[%] A. NoGram B. Gram1 C. Gram2 D. Gram3

open Eseg 13.43 4.10 2.20 2.02
Esym 28.01 24.69 23.58 20.97
Ebase 16.24 14.93 8.92

closed Eseg 16.67 1.39 0.65 0.58
Esym 26.81 12.89 8.24 7.14
Ebase 4.11 4.22 4.15

Figure 5 . Examples of recognition results under each
condition. Errors in symbol recognition are marked.

We compare the results with the symbol segmentation er-
ror rateEseg, the symbol recognition error rateEsym and
the baseline error rateEbase. The results are shown in Ta-
ble 2. We can see that for most of the expressions, symbol
segmentation and recognition error decreases along with
the strengthening of the grammatical constraint, and that
errors in structure recognition can decrease along with the
increase of grammatical constraint.

Examples of recognition results under each condition
are shown in Figure??. Comparing “NoGram” with
“Gram1”, one can see that symbol errors decrease when
simultaneous recognition of symbols and structure is per-
formed. Note that these errors are not corrected by syntac-
tic constraint as the grammar used in “Gram1” condition
has such a small constraint that it cannot reject expres-
sions like “· · · ∝}dse−||R···”, but because we also take into
account the structure likelyhood, which changed the rank-
ing of the candidates.

4 Conclusion

In the light of the fact that ambiguity in symbols and
structure recognition can be solved by their simultaneous
estimation and by the use of an expression grammar, we
viewed the recognition problem as a simultaneous opti-
mization of symbols and structures under the constraint
of an expression grammar. While classical mathematical
expression grammars are designed to generate strings rep-
resenting expressions, we extended the expression gram-
mar to model the stochastic generation of the 2D structure
and the handwritten strokes. The recognition problem be-
comes then equivalent to the search for the most likely
derivation from the input and it can be solved efficiently
with the CYK algorithm. This method can principally re-
duce errors by using simultaneous estimation of symbols

and structure and an expression grammar, which we con-
firmed through experiments.

Evaluation of this method on a larger database is the
most important issue ahead. Other problems to be solved
include reduction of the computation costs, design of an
optimal expression grammar, and modeling of the prior
probability of expression candidates.

References

[1] K. -F. Chan and D. -Y. Yeung. An Efficient Syntac-
tic Approach to Structural Analysis of On-line Hand-
written Mathematical Expressions.Pattern Recognit.,
33:375–384, 2000.

[2] K. -F. Chan and D. -Y. Yeung. Mathematical Expres-
sion Recognition: A Survey.Int. J. Document Anal.
Recognit., 3(1):3–15, Aug. 2000.

[3] U. Garain and B. B. Chaudhuri. Recognition of On-
line Handwritten Mathematical Expressions.IEEE
Trans. Sys. Man Cybern. Part B:Cybern., 34(6):2366–
2376, Dec. 2004.

[4] A. Kosmala, G. Rigoll, S. Lavirotte, and L. Pot-
tier. On-Line Handwritten Formula Recognition us-
ing Hidden Markov Models and Context Dependent
Graph Grammars. InProc. Int. Conf. Document Anal-
ysis and Recognition (ICDAR), pages 107–110, Sep.
1999.

[5] R. Plamondon and S. N. Srihari. On-Line and Off-
Line Handwriting Recognition: A Comprehensive
Survey. IEEE Trans. Pattern Anal. Machine Intell.,
22(1):63–84, Jan. 2000.

[6] R. Zanibbi, D. Blostein, and J. R. Cordy. Recogniz-
ing Mathematical Expressions Using Tree Transform.
IEEE Trans. Pattern Anal. Machine Intell., 24(11):1–
13, Nov. 2002.

