
HAL Id: inria-00105519
https://inria.hal.science/inria-00105519

Submitted on 11 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strategy for Flaws Detection based on a Services-driven
Model for Group Protocols

Najah Chridi, Laurent Vigneron

To cite this version:
Najah Chridi, Laurent Vigneron. Strategy for Flaws Detection based on a Services-driven Model for
Group Protocols. Workshop on Constraints in Software Testing, Verification and Analysis - CSTVA
06, Sep 2006, Nantes/France, pp.88-99. �inria-00105519�

https://inria.hal.science/inria-00105519
https://hal.archives-ouvertes.fr


Strategy for Flaws Detection based on a Services-driven

Model for Group Protocols

Najah Chridi and Laurent Vigneron ⋆

LORIA – UHP-UN2 (UMR 7503)
BP 239, 54506 Vandœuvre-lès-Nancy Cedex, France

{chridi,vigneron}@loria.fr

Abstract. Group key agreement is important in many modern public and dedicated ap-
plications. Nevertheless, as they have to be secure, their design is not straightforward.
As such, the modelling and the verification of such protocols are necessary in order to
avoid eventual weaknesses. This paper investigates a strategy for flaws detection for group
protocols properties. The strategy is based on both a services driven model for group pro-
tocols and constraint solving. Our strategy has been applied to several group protocols
such as GDH.2 and the Asokan-Ginzboorg protocol. This permits to pinpoint new attacks
on them. The result found for the case of GDH.2 with four participants can be generalized
to n participants. Another general attack has also been found for the case of the A-GDH.2
protocol.

1 Introduction

In recent years, applications requiring an unbounded number of participants have received in-
creasing attention either for public domains or dedicated ones. As such, the design of secure
group protocols [14] continues to be one of the most challenging areas of security research. To
secure their communications, group members need to use a shared key, known as group key,
which has to be updated following the dynamics of the group (join or leave operations, . . . ).
Therefore, several protocols dedicated to key establishment and updates have been proposed [8].
Among them, we are particularly interested in group key agreement protocols [9]. These proto-
cols enable a group of participants to share a common key over insecure public networks, even
when adversaries completely control all the communications.

Research in formal verification of cryptographic protocols has so far mainly concentrated on
reachability properties such as secrecy and authentication. It has given so successful interesting
results in the last years that this field could be considered as saturated. As such, many fully
automatic tools have been developed and successfully applied to find flaws in published protocols,
where many of these tools employ so-called constraint solving (see, e.g., [3]). Nowadays, dealing
with the verification of group protocols arises several problems. Indeed, such protocols highlight
new requirements and consider some complicated intended security properties other than secrecy
and authentication. In fact, most of the verification approaches can only tackle specific models
of protocols, and most of the time require the size of the group to be set in advance. This leads
to the restriction of the chances to discover attacks. Besides, group membership is very dynamic;
participants can join or leave the group at any time. As such, security requirements are more
complicated to satisfy.

The main contribution of the present work is a strategy for flaws detection for the group
protocols security properties. Our approach is based on both the services driven model described

⋆ This work is supported by the QSL operation COWS.



in [4] and constraint solving. As mentioned, constraint solving has been successfully employed for
reachability properties in the past and proved to be a good basis for practical implementations.
The services driven model permits to specify security properties for group protocols as sets
of constraints. This model specifies both group protocols and a large class of their intended
properties, varying from standard secrecy and authentication properties to much trickier ones,
such as key integrity, and backward and forward secrecy. Hence, our strategy paves the way for
extending existing tools for reachability properties to deal with security properties for group
protocols.

In this paper, we focus on group key establishment protocols. But this is worth mentioning
that our method is also dealing with contributing protocols. To present our results, the paper is
structured as follows. We first introduce our running example: The Asokan-Ginzboorg Protocol [2]
(Section 2). This protocol will be used throughout this paper to illustrate every new notion
introduced. In Section 3, we present the input required by our method. Then, Section 4 provides
the necessary background concerning the services driven model. In Section 5, we show how this
model can be used to search for attacks. The management of constraints and intruder knowledge
is explained in Sections 6 and 7. We illustrate the application of our method to two examples
in Section 8. And after a comparision with related work (Section 9), we summarize the results
obtained by our approach and then discuss the related work (Section 10).

2 Running Example: The Asokan-Ginzboorg Protocol

Throughout this paper we will illustrate our ideas using a running example: the Asokan-Ginzboorg
protocol [2]. It describes the establishment of a session key between a leader (An) and a random
number n of participants (Ai where 1 <= i <= n). The protocol proceeds by assuming that a
short group password P is chosen and displayed, and then known by all. We assume also that
there are two informations known by all the group: a one way hash function H and a commonly
known function F . When the leader starts the execution of the protocol by sending the key of
encoding (E), each participant generates two informations (a symmetric key (Ri) and a con-
tribution to the group key (Si)) and sends them encrypted by the key E. Messages exchanged
throughout the protocol are expressed as follows:

1.An −→ ALL : An, {E}P

2.Ai −→ An : Ai, {Ri, Si}E, i=1,. . . ,n-1
3.An −→ Ai : {{Sj, j=1,. . . ,n}}Ri

, i=1,. . . ,n-1
4.Ai −→ An : Ai, {Si, H(S1, . . . , Sn)}k some i, k = F (S1, . . . , Sn).

In this messages exchange, E is a public key generated by the leader and used to encrypt the
contribution (Si) of each participant Ai. Ri denotes a fresh symmetric key generated by the
participant Ai, sent to the leader with the contribution Si. The leader will use it to encrypt all
contributions (including Sn) in order to send the whole message to the participant Ai.

3 The Method’s Input

As any communication protocol, a group protocol can be seen as an exchange of messages between
several participants. This exchange is usually described by the set of actions executed by each
participant in a normal protocol execution, i.e. without intervention of an Intruder.
Formally speaking, we define an instance of the protocol as the union of instances of roles and
Intruder knowledge. An instance of a protocol is then given by ({Rp → Sp}p∈P , <P , S0) where,
P is a finite set and:



– {Rp → Sp}p∈P denotes the set of rules of receive-send messages exchanged between hon-
est participants. Each rule defines one step of the protocol: the messages sent by a honest
participant (Rp) and the expected response (Sp). Note that Var(Rp) ⊆ Var(Sp).

– <P is a partial order over P .
– S0 is a set of terms representing the initial Intruder knowledge.

Let us return to our running example: the Asokan-Ginzboorg protocol. Having tested our method
over several scenarios of this protocol, we have found an interesting result in the case of two
parallel sessions. Thus, the modelling considered in the following corresponds to that scenario.
In the first session, we have two participants: A1 is the leader and A2 is a normal member of the
group. In the second session, the roles are exchanged.
Throughout this paper, while expressing informations related to the Asokan-Ginzboorg protocol,
we adopt the following notations:

– pijk denotes the j-th step of the protocol played by the i-th participant in the k-th session.
– Algij the point of vue of the group key of the i-th participant during the j-th session.
– Terms written in capital letters are informations known by the participants whether from

the beginning of the execution or generated through the execution.
– Terms written in small letters denote variables. They may be instantiated by any values of

the same type.
– Sij denotes the contribution to the group key of the i-th participant in the j-th session.

The two sessions are expressed by the following steps:

p111 : Init −→ A1, {E1}P

p121 : x1, {x2, x3}E1
−→ {x3, S11}x2

p131 : x1, {x3, H(x3, S11)}F (x3,S11) −→ End, Alg11 = F(x3,S11)
p211 : x4, {x5}P −→ A2, {R1, S21}x5

p221 : {x6, x7}R1
−→ A2, {S21, H(x6, x7)}F (x6,x7), Alg21 = F(x6,x7)

p212 : Init −→ A2, {E2}P

p222 : x8, {x9, x10}E2
−→ {x10, S22}x9

p232 : x8, {x10, H(x10, S22)}F (x10,S22) −→ End, Alg22 = F(x10,S22)
p112 : x11, {x12}P −→ A1, {R2, S12}x12

p122 : {x13, x14}R2
−→ A1, {S12, H(x13, x14)}F (x13,x14), Alg12 = F(x13,x14)

The set of steps P = {p111, p121, p131, p211, p221, p212, p222, p232, p112, p122} is ordered by the par-
tial order <P : p111 <P p121 <P p131, p211 <P p221, p212 <P p222 <P p232and p112 <P p122.

4 The Services driven Model for Group Protocols

The services driven model presented in [4] permits to model contributed protocols, to study their
characteristics and security properties. This model has been applied on several protocols, such as
A-GDH.2, SA-GDH.2, Asokan-Ginzboorg and Bresson-Chevassaut-Essiari-Pointcheval and has
permitted to pinpoint several existing attack types on them. A group protocol is modelled by
three components <A,K,S>, where

– A: set of agents, members of the group,
– K: set of members knowledge,
– S: set of services. A service denotes the contribution of a participant to the generation of

the group key. The contribution of an agent ai to an agent aj is all information (message)
generated by ai and necessary for aj to deduce the group key.



Let i ∈ N, each ai ∈ A (i-th participant) is linked with other sets defined as follows:

– Si ⊆ S is the minimal set of services necessary to ai in order to generate the group key;
– Ki ⊆ K is the minimal set of private knowledge of ai, useful for generating services and the

group key; it includes the initial private knowledge and the information generated during the
protocol’s execution.

– Kij ⊆ K is the set of knowledge shared between agents ai and aj ; it denotes the minimal set
of shared knowledge that is useful for generating the group key; this information is given by
the protocol’s specification. Note that Kij = Kji.

In addition to the services used for the group key generation, other subsets of services represent-
ing the services provided by an agent are defined. Thus, Sai

denotes the subset of services to
which ai has contributed (directly or not) by providing a private information.
Sai

= {s ∈ S | ∃t subterm of s, such as t ∈ Ki}
This system permits to formally define security properties related to group protocols. Some of
them are strongly linked to the time evolution of the group, such as the independence of group
keys, the forward secrecy or the backward secrecy. Moreover, other properties are time indepen-
dent, like the implicit authentication, the secrecy, the confirmation or the integrity. The modelling
of these security properties is based on the interaction of subsets defined above. For instance, the
security property to be verified for the Asokan-Ginzboorg protocol is the key agreement property.
It says that for the same session, the group members have to deduce the same group key. This
property is specified in our model by: ∀ai, aj ∈ A with i 6= j, Algi = Algj.

For our example with two participants (A1 and A2), the group key agreement is violated
when: Alg12 6= Alg22, that is F (x10, S22) 6= F (x13, x14), or Alg11 6= Alg21, that is F (x3, S11) 6=
F (x6, x7). Therefore, the violation of the group key agreement property can be specified by the
following constraints: x10 6= x13 or x14 6= S22 or x6 6= x3 or x7 6= S11.
For more details about the modelling and the verification of other properties, the reader must
refer to the model presented in [4]. In the present paper we show how this model can be used to
search for attacks in group protocols.

5 Searching for Attacks in Group Protocols

We present in this section the algorithm of searching for attacks. It is described as follows:

Algorithm AttackSearch(ppty,instance)
execCorrect = True
Exec = {(∅, {Rp → Sp}p∈P , S0, ∅)}
SCP = ConstraintsPpty(ppty,instance)
While execCorrect = True and Exec 6= ∅ Do

choose (PT,PTT,S,SC)∈ Exec
canCompose = True
While canCompose = True and PTT 6= ∅ do

choose p minimal such as Rp → Sp ∈ PTT

If Compose(Rp,S) then

Treat(Rp → Sp,S,SC)
Take Rp → Sp from PTT
Add Rp → Sp to PT

else

canCompose = False



EndIf

End

If canCompose = True Then

If Attack(SC,SCP ) Then

execCorrect = False
EndIf

EndIf

End

The algorithm takes as parameters the instance of the protocol and the property to verify.
The first step of the procedure of searching for attacks consists in the generation of the

constraints set (SCP ) related to the violation of the security property given in parameter as
’ppty’. This is done in the algorithm by the function ConstraintsPpty. With this intention, we
follow the steps described below:

– the services driven modelling of the protocol’s instance (parameter ’instance’);
– the services driven modelling of the violation of the property (parameter ’ppty’);
– the deduction of the set of constraints related to the violation of the security property.

The constraints set generated constitutes the first level of the constraints tree (to be explained
in Section 6).

The idea behind the algorithm is to consider all the possible executions of the protocol in
order to find one execution corresponding to an attack. An execution is defined by the quadruple
(PT ,PTT ,S,CS) where,

– PT : the set of steps of the execution belonging to {Rp → Sp}p∈P which are already treated.
They are messages already exchanged between honest participants and the Intruder. At the
beginning of the procedure, this set is empty.

– PTT : the set of steps of the execution belonging to {Rp → Sp}p∈P which have not been
treated yet. This set is provided with a total order to say that a step must be treated before
an other and thus a message must be exchanged before an other. Initially, this set contains
all the steps given as parameter to the procedure AttackSearch.

– S: the set of the Intruder knowledge after the last treated step. Initially, this set is equal to
the set S0 of the instance given as parameter to the procedure AttackSearch.

– CS: the constraints set of the protocol. At the beginning of the procedure, this set is empty.

Consider an execution of the protocol among the (finite) set of possible executions. An execution
corresponds to an attack if the constraints generated throughout all the execution’s steps (de-
noted SC) are coherent with the constraints of the violation of the secutity property. This test
of coherence can be done at the end of the execution. In fact, for each step of the execution, we
consider the rule Rp → Sp. The aim of the Intruder is to compose from his current knowledge a
term corresponding to the pattern of the term Rp. In the algorithm, this is tested by the function
Compose. This function permits to test if the Intruder can compose the message Rp from his
current knowledge. We note that this function uses only the Intruder composition rules since
we assume that the set of the Intruder knowledge S contains only terms that cannot be decom-
posed yet. This hypothesis is maintained thanks to the Intruder knowledge management (to be
explained in Section 7). The function Compose returns a boolean result. If the result is negative,
then the Intruder fails in composing such a message, and so, he cannot go on in the execution.
Thus, this execution cannot lead to an attack. In this case, we consider another execution.

If the result is positive, then we have to treat the current step Rp → Sp of the instance. This
is the role of the function Treat. The matching between composed messages and the message



expected leads to the construction of constraints joining informations (constants or variables)
given in the message expected to the ones in the composed messages. We note that, in the case
where the Intruder can compose several messages matching with the expected message, we obtain
several alternatives and thus several choices of constraints (presented as a disjunction). These
constraints are added to the set of the protocol constraints SC.
Behind this addition, there is an important point that we must focus on: the management of
constraints, especially when there is a huge constraints’ set to be added only in one step of an
instance. This will be discussed in Section 6.

Once the messages are composed, the Intruder gets new knowledge that he will use in the
next instance’s steps. Therefore, the Intruder’s knowledge must be updated for each acquisition
of new information. Thus, we have to manage the Intruder knowledge set S for each step of a
protocol instance. Then, we add to this set S the new information acquired while taking into
account the definition of S as the set where we cannot apply the Intruder decomposition rules
to its terms yet. This notion will be more studied in Section 7.

At the end of the execution, the two sets of constraints SC and SCp are solved in order to
get a solution that relates variables of the execution’s steps with constants or with each other.
This is the aim of the function Attack. It tests if the two constraints’ sets are coherent. The two
sets are coherent if and only if there exists at least one path in the constraints tree that contains
only coherent constraints when the execution finishes (see Section 6).
If the two sets are coherent then the tested security property is violated for the concerned exe-
cution. In this case, the function permits to solve the constraints based on the union of the two
sets SC and SCP . While instantiating variables in the execution in question with the solution
found, we obtain the execution’s trace of the attack.

This method is efficient since the search for flaws is static as it corresponds to a resolution of
two constraints systems. Nevertheless, for an execution step, generating the constraints matching
all possible composed messages to the expected message can lead to a huge set of constraints. In
order to minimize this set, we propose two kinds of suggestions:

– In the first one, for an execution step, we consider only constraints relying on variables
used in the property’s violation constraints (we note V this set of variables). For the other
variables, we just save the information that the message must be composed from a certain
set of knowledge: the current Intruder knowledge.

– The second proposition is based on the combination between the construction of the con-
straints set of the protocol SC and the test of coherence of the two sets of constraints SC

et SCP . Indeed, while generating the constraints of the protocol related to one step, we test
the coherence of this subset of constraints with all the constraints built before. This permits
to eliminate unnecessary constraints. This can be done by the use of the constraints tree (see
Section 6).

6 Constraints Management

Our method for searching for flaws is based on the constraints’ solving. The first part of con-
straints comes from the modelling of the violation of the security property to be tested in the
services driven model (see Section 4). The second part is generated and updated at each step
treated among the different steps composing the protocol’s instance. It is to be noticed that these
steps are totally ordered in an execution.
Since the aim of our procedure is to search for an eventual attack, it’s goal is to find an execution
that corresponds to two coherent sets of constraints SC and SCP . Knowing the set SCP , in order



to minimize the number of constraints added in an execution’s step, we just add the necessary
constraints that are coherent with the ones of the previous steps. To do this, we propose to
associate the execution tree to a constraints tree. The idea behind the constraints tree is to allow
only the addition of the necessary constraints to the set SC and thus to consider only constraints
that are coherent with the ones of the previous steps.

The constraints tree is initially constructed from the constraints related to the violation of
the security property to be tested. These constraints represent the first level of the tree. We note
V the set of variables given in the current constraints of the protocol. This set is initiated to the
variables manipulated in the first level of the constraints tree. Besides, as constraints of the first
level can explain different choices to violate the property to be verified, the level concerned (the
first) is composed of different states representing these alternatives. For each of these states, we
consider the possible executions with the intention to find one corresponding to an attack.

Moreover, the tree has to be updated for each step Rp → Sp to be treated. We assume that
we are at the level i of the constraints tree. For each state of the level i, we focus on constraints
corresponding to the current step and coherent with constraints related to the current state of
the level i. Once the Intruder is able to compose message(s) looking like the message Rp, we can
generate different alternatives for the constraints matching this (these) message(s) to the message
Rp expected by the honest participant. Since these constraints can be different alternatives to
form the message expected, they can be eventually represented by different states at the level
i + 1. Let us note the set of the constraints representing an eventual state of the level i + 1 as
scc. While updating the constraints tree, we have to distinguish different cases:

– Constraints of scc do not contain variables that already exist in a previous level relating the
root to the direct parent. In this case, we may just save the information that this variable
(the message in general) has to be generated from a certain set of knowledge (the current set
of the Intruder knowledge). This information would be useful whenever another lower level
use the same variable.

– Constraints of scc contain variables that already exists in a previous level relating the root
to the direct parent. In this case, there are two possibilities:
• Constraints of scc are incoherent with those of parents (constraints that exist between

the direct parent (current state of the level i) and the root (alternative of the violation
of the security property)). In this case, we do not add this state to the (i + 1)-th level.

• Constraints of scc are coherent with these of upper parents. In this case, we maintain
these constraints scc as a possible son of the state at the level i + 1.
Besides, if the constrains of this possible state contains one constraint that already exists
in previous states or may be deduced by transition, we may omit it in order to get rid of
redundancy.
Moreover, if a constraint of scc manage variables that already exist in V (already have
values) and relating them to variables that are not yet in V , this constraint is replaced
by a new one connecting the new variable to its value (by transition).

7 Intruder Knowledge Management

In our method for flaws detection we assume that our Intruder follows the most referred Intruder’s
model: the Dolev-Yao’s model [7]. In this model, the Intruder has the entire control of the
communication network. That is to say that the Intruder can intercept, record, modify, compose,
send, encrypt and decrypt (if he has the appropriate key) each message. He has also the possibility
to send faked messages in the name of another participant. Since he has such capabilities, the
Intruder has to manage information he acquires from each step. We note the set of his knowledge



S. This set is defined as the set of all present knowledge in its maximality decomposed form.
From the beginning of a protocol’s execution, the Intruder knows some information. Terms
composing these information constitute the set of his initial knowledge S0. Then, initially, S = S0.
Throughout an execution, the set of the Intruder’s knowledge has to be updated for each step
treated. We distinguish two kinds of updates: when the Intruder has to compose a message(s)
having the same pattern as the message expected by an honest participant, and when he gets
some new information (as response from an honest participant).

Operation Composition Rules Decomposition Rules

Fresh
k

, k /∈ K ∪ A ∪ S

Concatenation
m1 m2

< m1, m2 >

< m1, m2 >

m1
,

< m1, m2 >

m2

Asymmetric Encryption
m k

{m}p

k

{m}p

k inv(k)

m

Symmetric Encryption
m b

{m}s
b

{m}s
b b

m

Product
x y

x.y

x.y y−1

x

Inverse
y

y−1

y−1

y = {y−1}−1

Exponentiation
t α

αt

αx.y y−1

αx

Table 1. Rules of the Intruder’s terms composition and decomposition

In the first case, we are treating the step Rp → Sp where the Intruder has to build a mes-
sage(s) suiting the pattern of the message expected by an honest participant (Rp). To do this,
the Intruder follows composition rules defined in the first part of the Table 1.
In the second case, since all the messages sent by the participants acting in the protocol are
sent to the Intruder, the last one has the possibility to decompose the message received by using
terms already existing in S at this moment. This set S can also contain terms that have not
yet be decomposed because some information was missing. Therefore, from information deduced
from the last message received, the Intruder can decompose terms in S. In order to decompose
terms, the Intruder follows decomposition rules defined in the second part of the Table 1.
We return now to our running example. In this paragraph, we consider the following execution’s
order (<e): p111 <e p212 <e p211 <e p112 <e p121 <e p222 <e p221 <e p122 <e p131 <e p232

The aim of the Intruder is to build the patterns of the messages expected by the honest partici-
pants. We notice that to fulfill this goal, we need to manage the Intruder’s knowledge whenever
he gets a new information (that comes from a message received). For each message expected
(taking into account the execution’s order), the Intruder build every message that looks like the
pattern of the message in question. By application of the Flaws Detection method to our example
of the Asokan-Ginzboorg protocol, we find the constraints expressed in Table 2.

While solving the constraints system listed in Table 2 with the one of Section 4 (the one of
the security property to verify) we find this solution: x10 = x6 = S21, x2 = R2, x7 = S22, x12 =
E1, x13 = x3 = S12, x5 = E2, x9 = R1and x14 = S11.
The instantiation of variables in the execution by the values found above gives us the execution’s
trace of Figure 1.

At the end of this execution’s trace, we have: Alg11 6= Alg21 and Alg12 6= Alg22. Thus, the
group key agrement is violated for each one of the two sessions.



1 x5 = E1 or x5 = E2

2 x12 = E1 or x12 = E2

3 x2 = R1, x3 = S21, E1 = x5 or x2 = R2, x3 = S12, E1 = x12

4 x9 = R1, x10 = S21, E2 = x5 or x9 = R2, x10 = S12, E2 = x12

5 x6 = x3, x7 = S11, x2 = R1 or x6 = x10, x7 = S22, x9 = R1

6 x13 = x3, x14 = S11, x2 = R2 or x13 = x10, x14 = S22, x9 = R2

7 x3 = S21, x6 = S21, x7 = S11 or x3 = x13, x3 = S12, x14 = S11

8 x10 = S21, x6 = S21, x7 = S22 or x10 = S12, x13 = S12, x14 = S22

Table 2. Constraints for the Asokan-Ginzboorg protocol

p111 : i −→ A1 : Init
A1 −→ i A1, {E1}P

p212 : i −→ A2 : Init
A2 −→ i A2, {E2}P

p211 : i −→ A2 : x4, {E2}P

A2 −→ i A2, {R1, S21}E2

p112 : i −→ A1 : x11, {E1}P

A1 −→ i A1, {R2, S12}E1

p121 : i −→ A1 : x1, {R2, S12}E1

A1 −→ i {S12, S11}R2

p222 : i −→ A2 : x8, {R1, S21}E2

A2 −→ i {S21, S22}R1

p121 : i −→ A2 : {S21, S22}R1

A2 −→ i A2, {S21, H(S21, S22)}F (S21,S22), Alg21 = F(S21,S22)
p122 : i −→ A1 : {S12, S11}R2

A1 −→ i A1, {S12, H(S12, S11)}F (S12,S11), Alg22 = F(S12,S11)
p131 : i −→ A1 : x1, {S12, H(S12, S11)}F (S12,S11), Alg11 = F(S12,S11)
p232 : i −→ A2 : x8, {S21, H(S21, S22)}F (S21,S22), Alg12 = F(S21,S22)

Fig. 1. Execution’s trace

8 Verification Results

By applying the strategy described in previous sections, we have found two authentication attacks
for the protocol GDH.2 with 4 participants (attacking resp. participant A3 and A4) (See Figures 2
and 3). These Figures show either the normal execution of the protocol and the message to be
changed in order to lead to an attack. In this section, we generalize these results to the GDH.2
with n participants and to the protocol A-GDH.2.

8.1 The GDH.2 protocol

Consider the GDH.2 [9] protocol with n participants (A1, ..., An). The Intruder can have the point
of vue of the group key of the last member. Indeed, he intercepts the last message intended for the
last participant (x1, ..., xn−1, xn) and alters the last component (xn) by replacing it by any compo-
nent of the last message varying from x1 to xn−1. When receiving the message expected, the last
participant An exponentiates the components x1...xn−1 by Rn and send them to the other partic-
ipants. The Intruder can then get the information varying from Exp(x1, Rn) to Exp(xn−1, Rn).



A2A1
α, αR1

αR2R3R4 , αR1R3R4 , αR1R2R3

αR2 , αR1, αR1R2

A3

A4

αR2R3 , αR1R3

αR1R2 , αR1R2R3

Alg4 = αR2R3R4

αR2R3

Fig. 2. First authentication attack for GDH.2

A2A1
α, αR1

αR2R3R4 , αR1R3R4 , αR1R2R4

αR2 , αR1, αR1R2

A3

A4

αR2R3 , αR1R3

αR1R2 , αR1R2R3

Alg3 6= Alg4

αR2

: Alg3 = αR2R3

Alg4 = αR1R2R3R4

Fig. 3. Second authentication attack for GDH.2

Then, An uses the last component xn in order to deduce the group key by exponentiating this by
Rn. This key from the point of vue of the last member is then Algn = Exp(xn, Rn). Thus, if the
Intruder replaces xn by a message xi from x1 to xn−1, the last participant deduces as group key
Exp(xi, Rn). Nevertheless, this information is already available on the network and then known
by the intruder.

The aim of the Intruder is now to have the point of vue of the group key of an intermediate
participant Ai varying from A1 to An−1. Ai deduces his key from the last message he received
(X) from An where X = x1, .., xn−1. Since his group key will contain a private information: Ri,
the Intruder has to make so that Ai generates for key of group a message which was transmitted
before and which contains private information Ri. These messages are accessible to the intruder
at the time of the first round of the protocol: when the members (in particular, intermediate
members) are invited to give their contributions by exponentiating the messages received by the
Ri. At the step pi, Ai receives a message of form x11, .., x1i. In the message to be sent by Ai

during this step, we find all the components x1j (varying from x11 to x1i) exponentiated by Ri.
We assume now that, for an i ∈ {1, n−1}, for the message X = x1, .., xi, ..., xn−1, xi is one of the
components x11, .., x1i. The participant Ai, while receiving X , takes his correspondent component
xi and generates his key by exponentiating it by Ri. Thus, Algi = Exp(xi, Ri). Nevertheless, the
Intruder got already the information Exp(xi, Ri) from the step pi.

8.2 The A-GDH.2 protocol

Consider the A-GDH.2 [9] protocol with n participants (A1, ..., An) where the Intruder is one of
the participants and has as raw i (I = Ai). The Intruder focus on the last message expected by the
last participant. This message X is composed of n components X = x1...xn. The last participant
exponentiates the (n-1) components of this message by Rn and the key of the corespondent
participant. Thus, the component xi is exponentiated by RnKni. Instead of sending the message
X = x1, ..., xi, ..., xn to An, the Intruder send the message X = x1, ..., xi, ..., xi. As response to
this message, An sends the message
X’ = Exp(Exp(x1, Rn), Kn1), ..., Exp(Exp(xi, Rn), Kni), ..., Exp(Exp(xn−1, Rn), Kn(n−1))
and deduces as group key Exp(xi, Rn) as xn = xi. From the message X ′, the Intruder gets
the component Exp(Exp(xi, Rn)Kni). He knows then Exp(xi, Rn) = Exp(xn, Rn). Thus, he
has the point of vue of the group key of the participant An. Moreover, for the other group
members, as the Intruder does not alter the rest of the normal protocol’s execution, he shares the
same expected group key with the rest of the group (apart from An) Exp(Exp(x1, Rn), R1) =
Exp(Exp(xi, Rn), Ri) = Exp(Exp(xn−1, Rn), Rn−1). The Intruder succeed then to divide the
group on two parts and has the two points of view of the group key of the two parties.



9 Related Work

The verification of group protocols is a research topic on which there has been and there is still
a lot of work. This is mainly due to the wide range of specific requirements imposed by this
kind of protocols. Varying from an unbounded number of participants to very particular security
properties, considering all those requirements is a real challenge, both theoretical and practical.
Either modelling and verifying group protocols and their properties are very difficult.

It exists various research activities to formally specify group protocols and their specific
requirements. For instance, Capsl has been extended to MuCapsl [6]. This language is to be
translated to a multiset term rewriting rules (MuCIL) which is an extension of CIL in order to
support multicast group management protocols. However, we only model the security property
of secrecy.
In a recent work [5], Delicata and Schneider present a framework for reasoning about secrecy in a
class of Diffie-Hellman protocols. The technique, which shares a conceptual origin with the idea
of a rank function, uses the notion of a message-template to determine whether a given value is
generable by an intruder in a protocol model. This work focus only on the security protocol of
secrecy. Then, it is less general than Pereira’s work as it deals with a sub class of Diffie-Hellman
protocols (it claims the condition of I/O independence).

In the verification process, after the first step: the specification of either the protocol and the
property, there is a more delicate step which is the verification step. It exists various research
activities oriented on this task varying from manual methods to automatic ones. They lead to
the discovery of several attacks that will be introduced in this section.

One of the most interesting techniques done by hand is suggested by Pereira and Quisquater
in [9]. They have introduced a method converting the problem of ownership of some information
by the intruder to a problem of resolution of a system of linear equations. With this method,
several attacks have been found in the protocols suite CLIQUES [9]. This method has also
permitted to get a generic result: it is impossible to design an authentication group key agreement
protocol built on A-GDH for a number of participants greater than or equal to four [10]. Although
this method is of great interest for analysing group protocols, its main drawback is that it has
to be run by hand for discovering attacks.

Additionally, some tools have been extended in order to deal with the new requirements of
group protocols. Significant attacks on such protocols have been found. In [12], Taghdiri and
Jackson have modelled a multicast group key management protocol proposed by Tanaka and
Sato [13]. They have been able to discover counterexamples to supposed properties. They have
then proposed an improved protocol. However, in their model, no active attacker was included.
Their improved protocol has been analyzed in [11] by CORAL and two serious attacks have
been found. CORAL has also been used to discover other attacks concerning two protocols:
Asokan-Ginzboorg and Iolus.

10 Summary and future work

Throughout this paper, we have presented a new strategy for dealing with group protocols and
more generally contributed ones. The approach hinges around the use of the services driven
model to deduce constraints related to the security property to verify. These constraints will be
used with the protocol’s execution constraints to obtain an attack execution’s trace if it exists.
This strategy permits to pinpoint new attacks in three different protocols. From these attacks,
we have generalized the result to two protocols with n participants.

This work is nascent, but we are currently applying it to other protocols and to other security
properties. We also plan to study the complexity of the suggested algorithm.



Since the analysis of a great number of protocols is generally done by automatic tools, we in-
tend either to implement our strategy or to extend existing automatic tools that are based on
constraints solving. Among these tools, we find Atse, one of four back-ends used in AVISPA [1],
a tool that has already treated a large number of Internet security protocols. Its expressive pro-
tocol specification language permits, modulo some extensions, to model contributed protocols
and their intended security properties. Since our basic constraints are based on equality and
inequality constraints, they may be seen as booleen constraints and then the whole constraints
can be considered as SAT constraints. Thus, we may integrate a SAT-solver in our solution.
The suggested approach can also be developed to consider another kind of group protocols such as
hierarchical protocols that present additional verification constraints. Indeed, we have to extend
the services driven model to deal with this kind of protocols.

References

1. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma,
P.-C. Héam, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santos Santiago,
M. Turuani, L. Viganò, and L. Vigneron. The AVISPA Tool for the automated validation of internet
security protocols and applications. In K. Etessami and S. Rajamani, editors, 17th International

Conference on Computer Aided Verification, CAV’2005, volume 3576 of Lecture Notes in Computer

Science, Edinburgh, Scotland, 2005. Springer.
2. N. Asokan and P. Ginzboorg. Key Agreement in ad hoc Networks. Computer Communications,

23(17):1627–1637, 2000.
3. Y. Chevalier and L. Vigneron. Strategy for Verifying Security Protocols with Unbounded Message

Size. Journal of Automated Software Engineering, 11(2):141–166, 4 2004.
4. N. Chridi and L. Vigneron. Modélisation des propriétés de sécurité de protocoles de groupe. In Actes

du 1 er Colloque sur les Risques et la Sécurité d’Internet et des Systèmes, pages 119–132, Bourges,
France, October 2005. CRISIS.

5. R. Delicata and S. Schneider. A formal approach for reasoning about a class of diffie-hellman
protocols. In Formal Aspects in Security and Trust, pages 34–46, 2005.

6. G. Denker and J. Millen. Modeling group communication protocols using multiset term rewriting,
2002.

7. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on Information

Theory, 29(2):198–207, 1983.
8. H. Hassan, A. Bouabdallah, H. Bettahar, and Y. Challal. Hi-kd: Hash-based hierarchical key distri-

bution for group communication - ieee infocom poster, 2005.
9. O. Pereira. Modelling and Security Analysis of Authenticated Group Key Agreement Protocols. PhD

thesis, Universit catholique de Louvain, May 2003.
10. O. Pereira and J.-J. Quisquater. Generic Insecurity of Cliques-Type Authenticated Group Key

Agreement Protocols. In 17th IEEE Computer Security Foundation Workshop, CSFW, pages 16–19,
Pacific Grove, CA, 2004. IEEE Computer Society.

11. G. Steel and A. Bundy. Attacking group multicast key management protocols using coral. Electr.

Notes Theor. Comput. Sci., 125(1):125–144, 2005.
12. M. Taghdiri and D. Jackson. A Lightweight Formal Analysis of a Multicast Key Management

Scheme. In Formal Techniques for Networked and Distributed Systems, FORTE, volume 2767, pages
240–256, Berlin, Germany, 2003. Springer.

13. S. Tanaka and F. Sato. A Key Distribution and Rekeying Framework with Totally Ordered Multicast
Protocols. In 15thon Information Networking, ICOIN, pages 831–838, Beppu City, Japan, 2001.
IEEE Computer Society.

14. C. Wong, M. Gouda, and S. Lam. Secure group communications using key graphs. In Proceedings of

the ACM SIGCOMM ’98 conference on Applications, technologies, architectures, and protocols for

computer communication, pages 68–79, 1998.


