N

HAL

open science

Intersurf: dynamic interface between proteins

Nicolas Ray, Xavier Cavin, Jean-Claude Paul, Bernard Maigret

» To cite this version:

Nicolas Ray, Xavier Cavin, Jean-Claude Paul, Bernard Maigret. Intersurf: dynamic inter-
face between proteins. Journal of Molecular Graphics and Modelling, 2005, 23 (4), pp.347-354.
10.1016/j.jmgm.2004.11.004 . inria-00105634

HAL 1d: inria-00105634
https://inria.hal.science/inria-00105634
Submitted on 11 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00105634
https://hal.archives-ouvertes.fr

Dynamic interface between proteins *

Nicolas Ray #, Xavier Cavin **, Jean-Claude Paul #,
Bernard Maigret

& Project Isa, Inria Lorraine, 615 rue du Jardin Botanique, BP 101, 54602
Villers-les-Nancy Cedex, France

b Project Edam, UMR CNRS/UHP 7565, Universite Henri Poincare - Nancy 1,
BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France

Abstract

Protein docking is a fundamental biological process that links two proteins. This
link is typically defined by an interaction between two large zones of the protein
boundaries. Visualizing such an interface is useful to understand the process thanks
to 3D protein structures, to estimate the quality of docking simulation results,
and to classify interactions in order to predict docking affinity between classes of
interacting zones. Since the interface may be defined by a surface that separates the
two proteins, it is possible to create a map of interaction that allows comparisons
to be performed in 2D. This paper presents a very fast algorithm that extracts an
interface surface and creates a valid and low-distorted interaction map. Another
benefit of our approach is that a pre-computed part of the algorithm enables the
surface to be updated in real-time while residues are moved.

Key words:
Protein docking, interface extraction, interaction map, visualization

Introduction

Molecular recognition is involved in all biological processes and is one of the
key feature for the communications between and within cells. Detailed ener-

* Supported by ARC Docking (Cooperative Research Initiative) Inria grant.
* Corresponding author.

Email addresses: Nicolas.Ray@loria.fr (Nicolas Ray),
Xavier.Cavin@loria.fr (Xavier Cavin), Jean-Claude.Paul@loria.fr
(Jean-Claude Paul), Bernard.Maigret@edam.uhp-nancy.fr (Bernard Maigret).

Preprint submitted to Elsevier Science 25 October 2004

Fig. 1. Left: a pair of proteins docked together. Middle: visualization of this in-
teraction using our algorithm. Right: corresponding map showing Van der Walls
interactions.

getic and structural knowledge of interactions between biomolecules is funda-
mental to understand the complex regulatory and metabolic pathways that
occur in living organisms and also to design drugs for blocking or modify-
ing these interactions. In the present post-genomic era, research increasingly
focuses on proteomics and protein-protein interaction networks as protein-
protein interactions play a central role in numerous processes in the cell and
are the key for controlling most of the cellular regulation pathways. The knowl-
edge of the structures and properties of contact surfaces, forces involved in
protein-protein interactions, kinetic and thermodynamic parameters of these
reactions are therefore of crucial interest. The properties of protein contact
surfaces depend on their function so they represent prospective targets for a
new generation of drugs. Experimental and computational efforts are therefore
devoted to large-scale generation and analysis of information derived from 3D
structures and dynamics of proteins, with the goal of scientific and commercial
breakthrough in drug discovery.

A large number of protein structures has been experimentally determined and
deposited into the Protein Data Bank (Berman et al., 2000), and this number
will grow rapidly with the development of new high-throughput technologies
in structural proteomics. However, only a small fraction of numerous protein-
protein complexes has been experimentally characterized so far. In this con-
text, theoretical prediction of protein-protein complexes is becoming critically
important in structural biology. Computational generation of protein struc-
tures via modelling by homology and threading, and by ab initio prediction,
and docking of a protein structure with potential interacting partners are two
related steps in what is now considered as computational proteomics. In re-
cent years, several groups have developed a variety of tools in an attempt to
solve the so-called protein-protein docking problem, that is, the prediction of
the geometry of a complex from the atom co-ordinates of its uncomplexed
constituents. Early protein-protein docking algorithms used exclusively a geo-
metric criterion based on the shape complementarity, as it is well known that
molecular shape plays a critical role in the binding of two proteins. Over the

years, the notion of shape complementarity has been confirmed by inspection
of a large number of complexed structures in the protein data bank. Con-
sequently, shape complementarity has been used as a prime consideration in
docking approaches that take into account entire molecular surfaces rather
than strictly active site regions.

Therefore, several protein-protein docking projects are concerned with the
surface matching problem, in order to determine the most favourable interface
(contact surface) between two macro-molecules, and many algorithms have
been proposed in this respect (for a review, see Halperin et al. (2002)). In
most of these algorithms a necessary preliminary step is to delineate and to
characterize the interface between the two partners. The problem is here to
depict conveniently the properties of a surface which can be very complicated.
For that purpose, 2D projections and maps are useful, because they can show
the entire surface and the distribution of many properties simultaneously.
Many parts of the surface that can not be seen in 3D from a given point of view
may be seen easily in a 2D projection. On the other hand, any projection of a
3D surface onto a 2D map introduces distortions of the 3D object, sometimes
making such 2D maps useless.

A well-known program for computing a 2D projection of a protein-protein
interface is ADSI, the interface-mapping module of ADS (Gabdoulline and
Wade, 1996), whose output can be visualized by MolSurfer (Gabdoulline et
al., 1999). MolSurfer was designed to display the location of interfacial voids
and “hot-spot” patches of surface properties of interest and the identification
of patterns in the distribution of interaction properties. However, despite its
high interest, the surface quality may be very poor and severe distortions
occur on the 2D representation when the interface is highly distorted, due to
the greedy algorithm used to recover both the surface and the map.

We present in this paper a new algorithm which is able to perform such tasks
in a very fast and efficient way, as illustrated by Figure 1.

1 Interface extraction

The surface used to represent the interaction may be defined as the set of
points that are equidistant to each protein. This definition ensures that the
surface will separate the two proteins, and that the distance between a given
point of the surface and each protein will be the same. Using this definition,
finding the interface is equivalent to extract the iso-0 surface of the function:

f(x) = dist(x, protein) — dist(z, proteing)

where dist(z, p) is the minimal distance between the point = and the protein p.

This problem is usually solved using a marching cube algorithm but, since
only one surface has to be found, greedy algorithms may be used to speed-up
the process. Gabdoulline and Wade (1996) propose to start from a seed and
to expand the surface around. This solution is very efficient when the surface
is flat enough (example: docking based on hydrophobic links), but fails to deal
with complex surfaces (example: a cavity filled by a residue).

We propose a faster and more robust approach using a non-structured 3D
mesh, namely a Delaunay tetrahedralization (if you are not familiar with De-
launay, a good review has been written by Bern and Eppstein (1995)). The
first step of our algorithm is a 3D Delaunay tetrahedralization computation
using atoms as vertices. This volume representation enables both a fast detec-
tion of atoms that are close to each other and a decomposition of the volume
into tetrahedra that are easier to manipulate. This tetrahedralization is then
used to detect the volume between proteins (as a set of tetrahedra) and to
extract an iso-surface (the interface) in this volume.

The remaining of this section is organized as follows: a description of the
3D Delaunay tetrahedralization is given, followed by the marching tetrahe-
dra algorithm used to extract iso-surfaces. The dynamic extraction (allowing
residues to be moved) of interfaces using these algorithms is finally discussed.

1.1 Tetrahedralization

Definition. The Delaunay tetrahedralization is defined as the dual (switch
faces/edges and vertices/cells) of a 3D Voronoi diagram. Given a set of seeds
(in our case, seeds are atoms), the Voronoi diagram is a segmentation of space
into cells such that all points included in the same cell are sharing the same
nearest seed.

Property. In a Delaunay tetrahedralization all spheres having an edge of the
tetrahedralization as a diameter will contain no vertices. This property ensures
that the shape of each cell (tetrahedron) is as good as possible (no face corner
angle can be more than 7/2). This makes it suitable to represent a volume
defined by a set of points.

In our application, a Delaunay tetrahedralization is created using atoms posi-
tions as vertices, so interface cells will be very easy to detect. Figure 2 shows
an example of such a tetrahedralization.

Complexity. The construction of a Delaunay tetrahedralization is an iterative
process. Inserting a new vertex requires to find the cell containing the new
point, to tetrahedralize it, and to apply a set of local operations to ensure that
the tetrahedralization remains a Delaunay tetrahedralization. The most time

Fig. 2. Delaunay tetrahedralization of the empty space between two proteins.

consuming step in large datasets is known to be the search of the containing
cell, which has a complexity of O(log(n)), where n is the number of vertices.
The whole algorithm complexity is then O(nlog(n) + k) (n insertions are
required), where k is the complexity of the result, that is O(n) for proteins
(thanks to homogeneous repartition of seeds). However, in our application,
atoms are inserted in the order of the peptidic chain, so starting the searching
step from the last inserted vertex bounds this step complexity by the maximum
number of cells between atoms of two adjacent residues (which is constant).
This remark makes the complexity of the tetrahedralization equal to O(n).

1.2 Surface extraction

The interface surface is extracted in two steps. The first step determines the
volume between the two proteins. This operation is straightforward using the
Delaunay tetrahedralization: all tetrahedra having vertices in both proteins
belong to the interface volume. The second step extracts a surface from this
volume using a marching tetrahedra algorithm. This algorithm works as fol-
lows: for each cell, a local surface (composed by one or two triangles) is ex-
tracted depending on the cell configuration. The cell configuration is defined
by the 4 atoms and the protein they belong to. So, the number of possible
configurations is 24 = 16 (4 vertices and 2 possible proteins for each); it is then
possible to pre-compute the triangles to be extracted for each configuration
(see Figure 3 for an example).

By construction, any vertex of the resulting surface is constrained to be placed
on an edge of the tetrahedralization; however, it can be be placed anywhere
on this edge. As shown by Figure 3, our algorithm sets vertices in the middle
of the segment bounded by Van Der Wall balls. It is also possible to move
the surface vertices along the tetrahedralization edges to smoothly slide the
surface between the molecular surfaces of each proteins (see Figure 4).

— Vertex placement for interface extraction
0 |
|

Vertex placement for coarse molecular surface extraction

VAW radius

. Atom contained in the first protein

Atom contained in the second protein

Fig. 3. Left: two configurations and their associated triangulation. Right: location
of the surface vertices.

The proposed algorithm enables to extract a set of triangles at the interface of
the proteins. To be manipulated as a continuous surface, access to the neigh-
boring triangles of a given triangle has to be made easy. This information is
added by an algorithm that retrieves topological information from the geom-
etry. This operation complexity is known to be O(nlog(n)), where n is the
number of triangles. However, it is possible in our context to remove the log(n)
factor needed to match vertices sharing the same position: to do so, vertices are
created from the tetrahedralization before launching the marching tetrahedra
algorithm.

Fig. 4. Left: the surface is snaped to the first protein. Middle: the surface is equidis-
tant to both protein VAW surfaces. Right: the surface is snaped to the first protein.

1.3 Dynamic modifications

The surface extraction algorithm is very fast (it takes 0.5 to 2 seconds on a
standard PC), but not enough to enable interactive surface extraction. We
present here a way to interactively modify the surface when a part (typically
a residue, as shown by Figure 5) of the protein is moved. To do this we will
see how to speed-up the most time consuming step of the algorithm, based on
the following considerations:

e The tetrahedralization has a complexity of O(n).

Fig. 5. Left : the original configuration. Right: the surface is locally updated while
a residue is moved to maximize the VAW forces.

e The surface extraction complexity is proportional to the number of tetra-
hedra of the interface. Since these tetrahedra are on the surface (an area)
of the protein (a volume), their number is proportional to n?/3. Note that
adding the topology information to the surface has the same complexity

(O(n?/3)).

The most time consuming step is the tetrahedralization. Fortunately, it is pos-
sible to update a tetrahedralization while moving some vertices in real-time.
To do this, a vertex to be moved is first removed from the tetrahedralization,
and then inserted again with its new position. Adding and removing a vertex
are two fast local operations, so it is possible to update the surface in real-
time. Notice that it is possible to update the surface only in new or modified
tetrahedra, this solution should be a bit faster but much harder to implement.

2 Mapping attributes on the surface

The interface surface between two proteins is very useful to visualize the inter-
action. However, the interaction is not completely defined by the geometry of
this surface. To improve the information given by the surface, it is possible to
“paint” it with several attributes that characterize the potential interactions
both qualitatively and quantitatively, as illustrated by Figure 6.

To bind attributes on the surface, remember that each vertex of the interface
fits on a segment (an edge of the tetrahedralization) defined by an atom of each
protein as extremities. The Delaunay tetrahedralization ensures that these
atoms are the nearest ones of the interface vertex. This property makes it
very easy to extract local informations about docking possibilities around each
vertex of the interface. This local information is used as an attribute, that is
binded as a color to the interface surface. In our experiments, we have tested:

e A quantitative attribute: the distance of the surface to the proteins. On
each vertex of the interface, a color scale from red (far) to blue (close) is

Fig. 6. Two interfaces with attributes as color. Left: “distance to proteins” attribute.
Right: “kind of possible interactions between residues” attribute.

used to represent the distance between the two nearest atoms. During an
interactive docking session, it might also be intersting to prevent proteins
overlaps by adding a third symbolic color for negative distances.

e A qualitative attribute: the kind of residues interaction that can occur. On
each vertex of the interface, a symbolic color is used to represent the kind
of interaction that is likely to occur between the two nearest residues. ! The
color coding that has been used in this paper is the following: hydrogen link
(light blue), hydrophobic link (green), Pi...X (purple), Pi...Pi (yellow), same
charge (blue), opposite charges (red), none (black).

Moreover, as in the MolSurfer application, electrostatic potential or hydrophilic
links can also be used as attributes. Finally, to enable to compare two surfaces
only through their 2D maps (see next Section), it is also interesting to add at-
tributes that represent the geometry of the surface. For instance, mapping the
surface curvature or average geodesic distance to other points of the surface
enables cavities to be detected.

3 Map generation

The interface is represented as a 3D surface with attributes mapped on it. To
make this information easier to be automatically manipulated by algorithms,
it is better to use a 2D map of the surface representing the attributes. In
this context, real-time dynamic updates of the 2D map are not of a crucial

1 Our implementation makes the assumption that the most important contacts are
represented by segments in the tetrahedralization. It would be possible to take into
account more distant interactions using a neighborhood of the atoms.

0%
oK

¥
R

Fig. 7. Left: the surface with blue and red lines as iso-u and iso-v. Right: the
corresponding map. The 2D /3D correspondance of triangles is illustrated by the
highlighted triangle.

importance, and therefore we will not concentrate on this problem.

To do this, the first step is to create a one to one function that will associate
the surface to a 2D domain. The second step it to use this function to create an
attibute map. The creation of such a mapping function for triangulated surface
is know as parameterization in the computer graphics field. The function is
piecewise linear on each triangle and is completely defined by 2D coordinates
(called texture coordinates) associated to each vertex (see Figure 7). We have
choosen the LSCM method of Levy et al. (2002), that is fast, does not require
to fix the borders, and generates almost conformal maps. The attribute map
is generated using this piecewise linear function. A hardware accelerated way
to do this is presented at the end of this Section.

3.1 Parameterization: Least Squares Conformal Maps

The LSCM parameterization method generates maps that are as conformal as
possible. Due to the piecewise linear nature of the map (i.e. defined by texture
coordinates), a real conformal map can not be found in the general case. So,
the goal is then to find a map that is almost conformal.

A conformal map respects the Cauchy-Riemann equation:

OUs) | OU(s)

=0
ox * y

where i/ = X! is the function that links the surface to the parametric space,
x and y denotes a local coordinate system on the surface and s is a complex
number representing the position in the map.

The algorithm finds texture coordinates that approximate a conformal map in
the least squares sense. Since the equation has to be respected for all points of
the surface, the energy to minimize is an integral of squares defined as follows:

2

us) U)o

+1

ox dy

Ec(Surface) = /

Sur face

where £¢() is the conformal energy. The notation |z| denotes the modulus of
the complex number z.

This energy is integrated over each triangle:

1 T
5C(T) = A_T : ”(W1 Wy Wg) ’ (Ul Uy U3) ”2

where T’ is the triangle, U; are the complex numbers that represent the para-
metric space vector of each edge, and W; are the complex numbers that rep-
resent the edge vectors in a local base of the surface triangle. Since the sum of
these energies can be represented as a quadratic form, the minimization can
be efficiently performed using a conjugate gradient algorithm. The choice of
this algorithm is motivated by the conformal goal that ensures to often find
a valid parameterization and that avoids texture swimming when used on a
multiresolution structure such as Progressive Meshes. Other benefits are the
natural border extrapolation and the overall performance.

3.2 Attribute map generation

The attribute maps are generated using the following idea: the 2D map is ras-
terized using the attributes. For each triangle of the surface, the corresponding
triangle in 2D (defined by the texture coordinates of its vertices) is rasterized
and the vertices attributes are interpolated. This operation is performed very
quickly by modern graphics hardware. Examples of maps are given in Figure 8.

4 Results and experimentations

Our algorithm has been implemented as a plugin of the VMD (Visual Molec-
ular Dynamics) software of Humphrey et al. (1996) and should be distributed
(as the Intersurf Plugin Version 1.0) along with the official release by the time
of publication.

Our algorithm has been tested against the ZDOCK benchmark (Chen et al.,
2003), composed of 58 co-crystallized pairs of proteins. Generating a map for

10

Fig. 8. Examples of attribute maps. Left: “distance to protein”. Right: “kind of
interactions between residues”.

all of these examples has been done in three minutes on a standard PC, i.e.
the average time required to generate a map is about three seconds. It is
decomposed as follows: extracting the interface is typically performed in one
second, creating the mapping function takes approximatively another second,
and the remaining second is spent creating the topology of the map. Table 1
shows detailed statistics for the fastest (1AVZ_C) and the longest (1GOT_C)
runs. The process is fast enough to be used in a molecular modelling software
or in an automatic pipeline. However, it is too slow to extract the surface
in real-time while moving a whole protein. Compared to previous work of
Gabdoulline and Wade (1996), our algorithm is a bit faster (about three times
faster) when ADSI is launched with the default settings; their mesh needs to
be denser than ours (about two times denser) in order to capture the geometry
with their regular connectivity mesh.

1AVZ_C | 1GOT_.C
Atoms 461 + 873 | 3082 + 2627
Triangles 868 2115
Tetrahedra 8119 22461
Interface area 1000 A* 3100 A
Total extraction time 1.5 s 5s

Table 1
ZDOCK benchmark: detailed statistics for the fastest (1AVZ_C) and the longest
(1GOT_C) runs.

In terms of quality, our approach ensures that the triangulation is valid and
composed of nice shaped triangles. The generated surface achieves its goal to

11

Fig. 9. Left: a screenshot of an interface created by MolSurfer. Middle: a close-up of
this surface shows that the mesh was not correctly extracted. Right: our approach
does not suffer from these problems.

make it easy to understand the way two proteins are docked. Notice that if the
triangulation is too coarse for high quality rendering, it is possible to smooth
it using a mesh subdivision algorithm such as (Dyn et al., 1990). Previous
work of Gabdoulline et al. (1999) gives similar results if the surface is easy
to unwrap, but fails to find a valid triangulation if the surface is spiky. Since
proteins are often linked together by a residue of the first protein fitting a
cavity of the second one, many interfaces are hard to unwrap. Figure 9 shows
the benefits of our approach for these kinds of surfaces.

Our parameterization step enables to generate valid and low distorded maps
for most cases (see Figure 10). However, a complex geometry or a bad topology
can make the map unsuitable for vizualization. In our benchmark, the map
extraction often (about 95% of the times) provides the expected result, and
the failed cases either present high distortions (due to complex geometry) or
are not valid (due to incompatible topology).

Conclusion

This paper introduces an efficient way to represent the interaction between two
proteins. This representation is very useful for visualization as well as for auto-
matic comparison between several interactions. The algorithm is fast enough
(always less than five seconds) to be integrated into an automatic process that
compares a large set of maps in order to classify the types of interaction. The
Delaunay tetrahedralization approach allows to fastly estimate attributes and
to interactively remove and add new vertices, making it possible to update
the interface in real-time (less than 0.1 second) while locally modifying the
protein geometry.

12

Acknowledgments

We thank the members of the Theoretical and Computational Biophysics
Group of the Beckmann Institute at the University of Illinois; special thanks
to Professor Klaus Schulten for making the cooperation on VMD possible and
to John Stone for the great technical support on the software. We also want
to thank to the anonymous reviewers for their helpful comments. This work
is supported by grants from the Inria (ARC Docking Cooperative Research
Initiative) and the Region Lorraine (Pole de Recherche Scientifique et Tech-
nologique “Intelligence Logicielle” / CRVHP).

References

Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N. Bhat,
Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The Protein Data
Bank. In Nucleic Acids Research, 28 (1):235-242 (2000).

Inbal Halperin, Buyong Ma, Haim Wolfson, and Ruth Nussinov. Principles
of Docking: An Overview of Search Algorithms and a Guide to Scoring
Functions. In PROTEINS: Structure, Function, and Genetics; 47:409-443
(2002).

Razif R. Gabdoulline, and Rebecca C. Wade. Analytically defined surfaces to
analyze molecular interaction properties. In Journal of Molecular Graphics;
14 (6): 341-353 (1996).

Razif R. Gabdoulline, Rebecca C. Wade, and Dirk Walther. MolSurfer: two
dimensional maps for navigating three-dimensional structures of proteins.
In Trends Biochem. Sci., 24, 285-287 (1999).

Marshall Bern and David Eppstein. Mesh generation and optimal triangula-
tion, 2nd edition. In Computing in Euclidean Geometry; 4: 47-123 (1995).

Bruno Levy, Sylvain Petitjean, Nicolas Ray and Jerome Maillot. Least squares
conformal maps for automatic texture atlas generation. In Proceedings of
the 29th annual conference on computer graphics and interactive techniques,
ACM Press (2002).

William Humphrey, Andrew Dalke, and Klaus Schulten VMD - Visual Molec-
ular Dynamics. In Journal of Molecular Graphics; 14: 33-38 (1996).

Rong Chen, Julian Mintseris, Joe Janin, and Zhiping Weng. A Protein-Protein
Docking Benchmark. In PROTEINS: Structure, Function,and Genetics 52:
88-91 (2003).

Nira Dyn, David Levine, and John A. Gregory. A butterfly subdivision scheme
for surface interpolation with tension In ACM Transactions on Graphics,

ACM Press (1990).

13

Fig. 10. Examples from the ZDOCK benchmark. Left: “distance to protein”. Right:
“kind of interactions between residues”.

14

