
HAL Id: inria-00105658
https://inria.hal.science/inria-00105658

Submitted on 11 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mesh Editing with an Embedded Network of Curves
Bruno Lévy, Wan Chiu Li, Jean-Claude Paul

To cite this version:
Bruno Lévy, Wan Chiu Li, Jean-Claude Paul. Mesh Editing with an Embedded Network of Curves.
IEEE International Conference on Shape Modeling and Applications - SMI 2005, Jun 2005, Cambridge,
USA, pp.62-71, �10.1109/SMI.2005.29�. �inria-00105658�

https://inria.hal.science/inria-00105658
https://hal.archives-ouvertes.fr

Mesh editing with an embedded network of curves

Wan-Chiu Li, Bruno Lévy
Project ISA, INRIA Lorraine, France

Wan-Chiu.Li@loria.fr, Bruno.Levy@loria.fr

Jean-Claude Paul
Tsinghua University / LIAMA

paul@tsinghua.edu.cn

Abstract

We propose a new topological data structure for repre-
senting a set of polygonal curves embedded in a meshed sur-
face. In this embedding, the vertices of the curve do not nec-
essarily correspond to the vertices of the surface. The par-
tition of the surface yielded by the intersecting curves is ef-
ficiently represented as a "cut-graph". The cut-graph stores
combinatorial information of the network of curves. In our
approach, the combinatorial form of information is system-
atically preferred to geometrical information since it im-
proves both robustness and efficiency.

Thanks to the topological data structure and algorithms,
the cut-graph can be sketched through iterations of design-
ing and erasing curves on the mesh surface in a "non-
destructive" way, i.e. without modifying the mesh until the
cutting operation is committed.

We also demonstrate several prototype curve de-
sign tools inspired by 2D vector and bitmap graph-
ics paradigms. We show how to sketch the cut-graph and
how these tools can be mixedly used.

1. Introduction

With the fast evolution in Computer Graphics and Digital
Geometry Processing, mesh cutting serves no longer only to
simple tasks such as splitting a mesh into two components
or trimming a mesh, but also plays a very important and
essential role in "higher-level" mesh processing operations
such as segmentation[25][26], intelligent scissoring[19] and
boolean operators. Quite often, these mesh processing oper-
ations can improve the result of some advanced techniques
such as automatic texture atlas generation[21], geometry
images[11] and making papercraft toys from meshes[23]
which require mesh segmentation, or constructive solid ge-
ometry (CSG) which requires boolean operators. Therefore,
a good mesh cutting technique is very important.

Mesh cutting (see [3] for a survey of mesh cutting tech-
niques) is one of the most fundamental operators of mesh
editing. It serves as the infrastructural building block for the

Figure 1. Mesh cutting. (The chinese charac-
ter means The spring season)

more complicated mesh processing operations. Either auto-
matic or semi-automatic, this operator needs to know where
the mesh should be cut or trimmed. This information should
be passed to the operator as a "cut-graph" which stores the
embedding of cutting curves and the topology of the curves.
To obtain a complex cut-graph, one should be allowed to
sketch this cut-graph with iterations of drawing and eras-
ing. The cut-graph can be seen as a planar map[1][9] em-
bedded in a meshed surface. Similarly, the sketching of the
cut-graph on meshes can be seen as "map sketching"[1][9]
on a 3D mesh. The map sketching paradigm has been pro-
posed to facilitate convenient interactive graphics design on
2D. We propose data structure and algorithms to facilitate
sketching the cut-graph on meshed surface so as to extend
this paradigm from 2D graphics design to 3D mesh edit-
ing.

To design a cutting curve, the most straightforward and
convenient way may be to design it along the edges of the
mesh, which means that vertices of the graph correspond to
the vertices of the surface. However, this yields jaggy bor-
ders of the cut mesh. The cutting result is especially un-
pleasant if the original mesh is irregular and coarse (the

black path shown in Figure 2-C). Despite the low complex-
ity of this approach, it is not preferred. Therefore, in order to
obtain smooth cut borders, one needs an embedding which
allows to design a cutting curve whose vertices do not nec-
essarily correspond to the vertices of the mesh.

Moreover, in order to enable to sketch a cut-graph more
complex than a simple curve (see Figure 5), one needs
incremental insertion of new cutting curves, i.e. with ev-
ery cutting curve designed, new intersections between this
new curve and the exiting cut-graph should be dynamically
found and updated in the cut-graph. Then, through iterations
of design and erasing, one obtains the desired cut graph.
Sketching a cut-graph on a non-planar mesh is complicated
since it requires a representation of the way the curve is em-
bedded on the mesh. Moreover, from an interaction point of
view, designing curves on a mesh is non-trivial.

1.1. Motivation

Though many studies have been done to do mesh
cutting[3], few studies address the problem of find-
ing a good topological data structure which facilitates both
the embedding of curves and the sketching of a cut-graph
on the mesh.

Our goal is to facilitate mesh cutting by providing a
framework to sketch the cut-graph on meshes. The frame-
work consists of two main parts as follows:

• Topological data structure and algorithms: provide
a robust and efficient embedding of cutting curves on
the mesh and allow sketching by computing the cut-
graph incrementally (this part will be detailed in Sec-
tion 3),

• Interactive curve design tools:provide efficient and
convenient ways, which require the least intervention
of the users, to design cutting curves. Thanks to the
incremental computation of the cut-graph, one can
sketch the cut-graph by mixedly using different curve
design tools (this part will be detailed in Section 4).

2. Previous Work

2.1. Curve design on mesh

Kanai and Suzuki[13] design curves on meshed surface
by linking two consecutive vertices of the curve by their
shortest path (which will be introduced in Section 2.2) over
the mesh. This is equivalent to linking two points in 2D
by a straight line. Their shortest path algorithm does not
find an exact solution. Hofer and Pottmann[12] proposed
a spline-based method which gives more freedom to fit a
curve to user-selected vertices by controlling the tension of
the curve by a parameterw. Increasingw draws the resulting
curve to the curve composed by the shortest path segments

A B C

Figure 2. The two green points are curve ver-
tices. The red curves are the shortest path
between the two vertices in each of the three
figures. The black curve is also a geodesic
in A, is a straight line in B, is the Dijkstra’s
shortest path in C respectively.

(whose tension is maximum). The introduction of tension
gives smoother curves by interpolating all the curve vertices
and reduces the number of curve vertices.

In our work, we adapted a method to design curves sim-
ilar to the one of Kanai and Suzuki[13]. We did not adapt
the spline-based method for the sake of brievity (However,
this can be easily adapted to our structure).

2.2. Geodesic and shortest path problem

A geodesic is a locally length-minimizing curve. In the
plane, the geodesics are straight lines. On the sphere, the
geodesics are arcs of the great circles. Here, we are only in-
terested in finding a geodesic between two points on a trian-
gulated mesh. Hofer and Pottmann[12] proposed a method
which finds the geodesic between points using energy-
minimized splines on a triangulated mesh.

Sometimes, one needs not only a geodesic between two
points but also needs it to be the shortest geodesic (which
will be called shortest path henceforth, see Figure 2-A)), for
instance, to do texture synthesis on surface[27].

Many algorithms are proposed to do so which can be cat-
egorized into exact methods and approximate methods.

Exact solution: Mitchel et al.[24] and Kapoor[15] used
wavefront propagation method to compute shortest path
with a complexity ofO(n2logn)andO(nlog2n) respectively,
wheren is the number of vertices. These methods fall into
the Dijkstra paradigm; Chen and Han[5] proposed non-
Dijkstra method which finds shortest path on a polyhedral
surface convex or non-convex, with or without border. This
algorithm works by unfolding the facets of the mesh. Al-
though it has aO(n2) complexity, it is considered to be the
only feasible exact method due to its simple concept.

Approximate methods:Kanai and Suzuki[13] proposed
an algorithm that computes the shortest path of a discrete
weighted graph simplified from the original mesh. Then,
this path is refined within a certain neighbourhood. The

shortest path found depends a lot on the first approximated
path; Kimmel and Sethian[17] proposed a method which
runs inO(nlogn). However, it can be quite inaccurate even
in planar surface. Kirsanov et al.[18] proposed an approx-
imate method which runs also in the same time complex-
ity as Kimmel and Sethian[17] but guarantees exact solu-
tion on a planar mesh.

Alternative The exact methods are generally computa-
tionally expensive. This prevents them from being used in
interactive applications especially when the meshed model
is large. The approximate methods, in spite of the improved
computational time, do not always compute a satisfactory
accurate solution. Therefore, we introduce a heuristic that
uses exact methods and significantly reduces the computa-
tional time by confining the search region for the shortest
path to a subset of triangles. This heuristic will be detailed
in Section 4.2.1.

3. Data Structure and Algorithms

This section introduces our data structure that rep-
resents a cut-graph embedded in a polygonal surface.
We identify several classes of cut-graph/surface rela-
tions, and present algorithms for enforcing one-to-one cor-
respondence from a weakly embedded graph. We show
then how to use this algorithm to port the map sketch-
ing paradigm[1][9] to meshed surfaces, and incrementally
construct the cut-graph.

3.1. Definitions

Abstract cellular complex This section gives the classic
definitions and notations for abstract cellular complexes.
The reader is referred to [22] for more details.

• let Γ be a finite set.
The elements ofΓ are called thecellsof Γ;

• let ≤ be a stricly partial order onΓ, i.e. a reflexive,
anti-symmetric and transitive relation.
The relation≤ is referred to as thebounding relation;

• consider the functiondim : γ → N characterized by:
∀γ, γ′ ∈ Γ× Γ, γ ≤ γ′ andγ 6= γ′ ⇒
dim(γ) < dim(γ′)
The functiondim is called theorder function.
A cell γ such thatdim(γ) = k is called ak-cell, andk
is called thedimensionof γ;

• the functiondim yields a partition ofΓ into Γ0 . . .Γn

defined by:∀γ ∈ Γk, dim(γ) = k.
The maximum dimensionn is called the dimension of
the cellular complexΓ.

• theboundaryB(γ) of a cellγ is defined by:
B(γ) = {γ′ ∈ Γ|γ′ 6= γ andγ′ ≤ γ}

A B

C D

Figure 3. The em∗ function: to find the embed-
ding of a segment of the cut-graph Γ (bold
segment), we first find in which cells its ver-
tices are embedded, and compute the inter-
section of the stars of those cells (dashed
zones).

• thestar γ∗ of a cellγ is defined by:
γ∗ = {γ′ ∈ Γ|γ ≤ γ′}

• ageometric realizationof Γ is an isomorphism putting
Γ in correspondence with a set of open setsΓ′. The or-
der relation≤ is translated toΓ′ as follows:
γ1 ≤ γ2 ⇔ γ′1 ∈ ∂γ′2
where∂γ′2 denotes the border ofγ′2. The geometric re-
alization is said to beconformif the geometric cells of
Γ′ are disjoint.

Line embedded in a surfaceTo represent a cut-graph em-
bedded in a surface, we use two abstract cellular complexes
and one relation connecting them:

• the cut-graph can be represented by a 1-dimensional
cellular complexΓ = (Γ0,Γ1,≤);

• the surface can be represented by a 2-dimensional cel-
lular complexΣ = (Σ0,Σ1,Σ2,≤);

• the cells of the cut-graph are connected with the cells
of the surface by aninclusion relation⊆ defined on
Γ× Σ.

Note that if the geometric realization is conform, we
have:

∀σ1, σ2 6= σ1 ∈ Σ× Σ, σ1 ∩ σ2 = ∅
then, for allγ ∈ Γ, we have at most oneσ ∈ Σ such that
γ ⊆ σ. As a consequence, it is natural to represent the rela-
tion⊆ by the functionem : Γ → Σ ∪ {∅}, defined by:

em(γ) = σ whereγ ⊆ σ if σ exists
em(γ) = ∅ otherwise

A B C D

Figure 4. Classes of cut-graph/surface relations. A: weakly-embedded cut-graph; B: strongly-
embedded cut-graph; C: realized cut-graph; D: cut surface

The functionem will be referred to as theembedding
function in what follows. We now suppose that the embed-
ding functionem is combinatoriallyrepresented at the ver-
tices ofΓ. From an implementation point of view, we sup-
pose that each vertex ofΓ has a pointer to a cell ofΣ. For
instance, if the cut-graphΓ was manually digitalized on the
surfaceΣ, the system stores in each vertex ofΓ which cell
of Σ was picked. Our goal is now to answer the following
questions:

1. from the definition ofem over the vertices ofΓ, how
can we deduce the definition ofem over all the other
cells ofΓ ? In other words, can we find in which cells
of Σ the edges ofΓ are embedded ?

2. what are the combinatorial conditions of valid-
ity which make this extension ofem possible ?

3. from an invalid configuration, how can we define an al-
gorithm that enforces these conditions ?

To answer these questions, we consider the function
em∗ : Γ → P(Σ) defined by:

em∗(γ) =
⋂
{em(γ′)?|γ′ ∈ B(γ) ∩ Γ0}

Intuitively, em∗(γ) computes the embeddings of all the
vertices ofγ, and intersects the stars of all those embed-
dings. Trivially, from the definition ofem∗, we have:

∀σ ∈ em∗(γ), γ ⊆ (σ ∪B(σ))

Figure 3 shows what theem∗ function looks like for cer-
tain cases. The two vertices of the cut-graph (black dots) are
embedded in cells of the surface. The stars of those two cells
are displayed using two different hashing styles. The inter-
section is shown using crossed hashes.

However, as can be seen in the examples shown in Fig-
ure 3-B and C,em∗(γ) may contain too many cells. To de-
termine the prolongation̄em(γ) of em, i.e. to find the cell

of Σ in whichγ is embedded, we need to filter-out the cells
σ of em∗(γ) such thatγ ⊆ B(σ). This can be easily done
by finding the cell of minimum dimension inem∗(γ):

¯em(γ) = em(γ) if γ ∈ Γ0

¯em(γ) = σ ∈ em∗(γ) such that
dim(σ) = min{dim(τ)|τ ∈ em∗(γ)}

if em∗(γ) 6= ∅,

¯em(γ) = ∅ otherwise

In examples C and D in Figure 3,em∗(γ) contains
two facets and one segments. Selecting the cell of low-
est dimension enables the segment to be retreived. Note
that the so-defined¯em(γ) is unique, else this would con-
tradict the conformity assumption (Σ would have two
intersecting cells). This extension̄em of the em func-
tion answers question 1.

Now we want to answer question 2, e.g. identify the in-
valid configurations. As shown in Figure 6-A, a segmentγ
of Γ cannot be embedded in a cellσ of Σ if its extrem-
ities are embedded in two cellsσ1 and σ2 that are "too
far away”, i.e. if we cannot find a cellσ in Σ such that
σ1, σ2 ∈ (B(σ) ∪ {σ})2. This condition also corresponds
to em∗(γ) = ∅.

The other invalid configuration occurs when the
cut-graph Γ is non-conform (Figure 6-B). Note that
if we got a non-conform cut-graph we have two seg-
mentsγ1 6= γ2 andγ1 ∩ γ2 6= ∅. If ¯em is defined, we know
that the two segments are embedded in the same cellσ
of Σ, i.e. ¯em(γ1) = ¯em(γ2) = σ, and that the intersec-
tion γ1 ∩ γ2 is embedded inσ. This will be used later to fa-
cilitate the computation ofγ1 ∩ γ2.

A

B

C

Figure 5. Sketching the cut-graph on meshes. A&B: dangling curve segments are erased in the
sketch; C: An "art-nouveau"-style door(inspired by the image) 3D model is being designed.

The domain of definition of the embedding function̄em
makes it possible to distinguish three different classes of
cut-graph/surface relations. We say that the cut-graph is:

• weakly embedded(Figure 4-A) if the function ¯em is
defined at the vertices only;

• strongly embedded(Figure 4-B) if the function ¯em
is defined at the vertices and the segments, i.e.∀γ ∈
Γ, ¯em(γ) 6= ∅;

• realized (Figure 4-C) if the cells ofγ are embed-
ded in cells of the same dimension inΣ, i.e. ∀γ ∈
Γ, dim(¯em(γ)) = dim(γ).

Using these notion, it is possible to answer question 3,
by designing an algorithm that enforces therealizedcon-
dition from aweakly embeddedand possiblynon-conform
cut-graph:

A B

Figure 6. Invalid embedding configuration: A:
empty em∗; B: non-conform cut-graph.

1. ensure strong embedding
For all γ ∈ Γ1 such that ¯em(γ) = ∅, replaceγ with
the geodesic traced onΣ that links the two extremities
of γ

2. ensure conformity of cut-graph
•2.1 For all σ in Σ0, merge all the vertices ofΓ em-
bedded inσ.
•2.2 For all σ in Σ1, sort the vertices ofΓ embedded
in σ alongσ.
•2.3 For all σ in Σ2, intersect all the edges ofΓ em-
bedded inσ (using a line-sweeping algorithm).

3. realize the cut-graph in the surface
Insert all the missing vertices and edges inΣ.

Note that the algorithm uses as much combinatorial in-
formation as possible: intersection computations are sys-
tematically restricted to the smallest possible cell ofΣ, by
using the ¯em function. This improves both robustness and
efficiency as compared to a pure geometrical solution. All
the intersections are either sorted along edges (1D) or within
facets ofΣ (2D). The only required geometric computations
are the geodesic tracing algorithm (in step 1), sorting points
along edges (in step 2.2) and segments intersections within
facets (in step 2.3).

Figure 5 shows initially non-conform cut-graphs made
conform by applying step 2 after each curve design.

Implementation details: From a practical point
of view, each cell σ of Σ stores the list of cells
em−1(σ) = {γ| ¯em(γ) = σ} (in our implementa-
tion, each cell ofΣ hasstd::vector of pointers). To
represent the cut-graphΓ, our implementation uses a clas-
sical graph data structure. The surfaceΣ is represented by a
halfedge data structure (see e.g. [2][6][20][16][4]). We use
our implementation[10], that has the possibility of dynam-
ically attaching information to the cells of the represen-
tation (the vertices ofΓ storeem and the cells ofΣ store
¯em−1)

Complexity: Let n = |Γ| denote the number of cells of the
cut-graph andm = |Σ| the number of cells of the surface.

In our algorithm, the most costly step is the geodesic
computation algorithm. The method we use (Chen and
Han’s method) hasO(m2) complexity. With the heuristic
we use, this reduces toO(mlog(m)) (at the expense of not
always returning the shortest geodesic, which is not prob-
lematic for our application).

Worst case complexity:For enforcing the strong em-
bedding condition, there are two degenerate configurations:
if the cut-graph is completely embedded in a single facet,
the algorithm reduces to constructing a planar map of the
cut-graph, with a worst-case complexity ofO(n2) (see Fig-
ure 7-A). If the surface has two vertices with a high valence
and the cut-graph connects these two vertices, the bottle-
neck is the stars intersection computation (intersection of
two sets), which costsO(m log(m)) (see Figure 7-B).

Average complexity: In real-life cases, the cut-graph
and the surface have similar resolutions, which means that
each facet contains at most one intersection of the cut-
graph, and the complexity reduces toO(n). In practice, all
the examples shown in this paper run in less than one sec-
ond.

A B

Figure 7. Configurations of worst case com-
plexity.

4. Interactive toolbox for curve design on sur-
face

To sketch the cut-graph, one needs to design curves on
the surface. We present a toolbox for curve design which
combines the vector and bitmap graphics paradigms. It al-
lows sketching the cut-graph by mixedly using the tools.
It has been inspired by some 2D graphics softwares which
combine the two graphics paradigms to provide a con-
venient graphics design environment. We extended this
mixedly-use idea from 2D graphics design to 3D mesh edit-
ing. However, this extension from 2D to 3D is not trivial
since the data structure and algorithms presented in Section
3 which facilitate the embedding and incremental computa-
tion of the cut-graph is required for sketching on meshes.

4.1. 2D drawing

In 2D, drawing tools fall in one of the following two
paradigms,

1. vector graphics:
the user defines a curve by specifying a sequence of
points of this curve. There are two ways to inter-
prete this sequence of point to obtain a curve. One
can either connect consecutive points by straight lines
(geodesics) or interpolate the points to form curves
using splines[7]. This method is good for defining
regularly-shaped curves. Figure 8-A&B shows a let-
ter of "S" designed using this approach.

2. bitmap graphics:
by using a brush, one paints on a bitmap image, which
represents the described shape by a set of pixels. Then,
one can retrieve the border of this shape as a set of lines
and curves. This method is preferred when drawing ar-
bitrary curves. Figure 8-C shows the contour, with the
use of spline, of theSMI2005logo retrieved.

A B C

Figure 8. Vector-graphics: A: curve vertices;
B: vertices linked up by straight line seg-
ments; Bitmap-gaphics: C: SMI2005 logo in
bitmap(top); the coutour of the logo retrieved
(using GIMP) from the logo (bottom).

A B C D

Figure 9. Cutting using the vector-graphics tool. A: Curve vertices(blue points) designed by user;
B: consecutive points are linked by geodesics(white and yellow segments); C: cut-graph formed by
several cutting curves with calculated intersections(green points); D: cut mesh

Nowadays, more and more 2D graphics softwares, for in-
stances, Canvas, CorelDraw and Flash, provide unified de-
signing environment. Designers benefit from tools from the
both paradigms. This evolution in the 2D world inspired us
to extend this idea from the 2D graphics to 3D mesh edit-
ing.

4.2. The toolbox

This toolbox consists of tools from each of the two
paradigms. One can mixedly use different tools to sketch
the cut-graph on the mesh.

4.2.1. Vector-graphics tool: the user can design a curve
on the meshed surfaceS by defining a sequence of curve
verticesvi∈S, i=1,...,n on the mesh surface. The curve ver-
tices are not necessarily vertices on the mesh. Unlike in 2D,
the segment between two vertices on a curve on a mesh sur-
face is no longer a straight line but a geodesic (as shown
in Figure 2-B). Consecutive points are linked by a segment
calculated by our geodesic algorithm which will be detailed
below. An example of the application of this tool is demon-
strated in Figure 9.

Since our goal is to facilitate interactive mesh editing,
we could not afford to use exact shortest path methods with
quadratic complexity or even worse, especially for large
meshed models. Though approximate methods find non-
exact shortest path in a reasonable time, exact solution is
always preferred. On the other hand, exact methods execute
in reasonable time provided that the number of vertices is
small enough even with their quadratic complexity.

Our heuristic works as follows: Provided that the start-
ing and destination points on the mesh are not too far away
one from each other, we can find an exact shortest path be-
tween these two points by restricting the search in a small
local region. The method consists of two steps, we first find
the Dijkstra’s shortest path, i.e. the shortest path along the
edges of the mesh (as shown by the black curve in Figure 2-
C), between these two points. Then, with this path, we find
a ribbon-like neighbourhood (as shown by the orange re-

gion in Figure 2-C) along this path. Within this neighbour-
hood, we apply an exact method to find the shortest path be-
tween these two points. We use the implementation of the
Chen and Han[5] provided by Kaneva and O’Rourke[14].
In this way, by limiting the number of vertices to the num-
ber of vertices in this band of neighbourhood, our method
reduces the computation time enough to be used for inter-
active mesh editing operations even on large meshed mod-
els.

4.2.2. bitmap-graphics tool: Through a 3D painting sys-
tem (as demonstrated in Figure 10), which requires a param-
eterization [8] (mapping from 3D to 2D), users can paint di-
rectly on the meshed surface to obtain a desired form. Note
that the parameterization does not need to be global (a local
parameterization is sufficient). Only the interested region is
parametrized to a single chart. Thanks to the parameteriza-
tion, the painting is stored in a texture. After the painting is
finished, the sharp edges on this image are detected and re-
treived as a set of 2D curves. Again through the parameteri-
zation, these 2D curves are mapped back to a 3D cut-graph.
Figure 10 demonstrates the results of trimming the chinese
character using the bitmap-graphics tool.

4.2.3. Mixedly use of the tools:One can mixedly use the
two tools introduced above to sketch a cut-graph. Figure 11
shows an example of sketching the cut-graph by using both
the bitmap-graphics tool and the vector-graphic tool.

5. Conclusion

With the goal to facilitate interative mesh editing, a
framework to sketch a cut-graph on a mesh for cutting is
presented. This can be thought of as a generalization of
2D map sketching[1][9] to 3D meshed models. Using the
proposed data structure, smooth cutting curves can be de-
fined. Moreover, with the topological nature of the data
structure, the desired cut-graph can be sketched after iter-
ations of designing and erasing. During these iterations, the
curve designing tools from both vector and bitmap-graphics
paradigms can be used. Sketching the cut-graph on a mesh

A B C D E

Figure 10. Trimming a chinese character using the bitmap-graphics tool. A: A vase cut vertically; B:
the parameterization of the vase onto a texture; C: one paints the chinese character on the surface
directly and the painting is saved in the texture (B); D: the contour of the character found by edge
detection on the texture is mapped back to 3D as a cut-graph; E: trimming result with the character.

is particularly useful for shape modeling (see Figure 1, 9
and 10) and architectural (see Figure 5-C) applications.

In addition to be used manually by designers, the sketch-
ing concept may be applied to some automatic operations,
for instance, given a cut-graph output from an algorithm of
a mesh segmentation method, the jaggy borders between
charts can be easily replaced by the geodesic paths (as
shown in Figure 12) to give a texture atlas with smooth chart
borders. This improves both texture mapping (by reducing
boundary artifacts) and spline-fitting processe).

With the robustness and efficiency of the data structure
and algorithms, the mesh cutting operation presented can
serve the very important "infrastructural-block" role in a
mesh editor.

6. Future Works

In future work, we will explore possible integration of
other cut-graph design tools, such as splines as in [12], and

A B

Figure 11. Sketching the cut-graph by
mixedly using the tools. A: the blue and
green curves are designed using the bitmap
and vector-graphics tool respectively; B:
note that some dangling curve segments are
erased.

templates, as in intelligent scissoring [19].
Another research topics concerns the generalization to

objects of higher dimensions. The data structure we have
defined, and the way to extend theem function is indepen-
dent on the dimension. As a consequence, it is possible to
use our approach to cut meshed volumes by surfaces.

In our approach, the cut-graph can self-intersect, and the
intersections are efficiently retreived. However, a limitation
of our approach is that it requires a conform surface, i.e. the
surface cannot self-intersect. Overcoming this limitation re-
quires more complex data structures, since the embedding
relation is not injective anymore. Designing a combinato-
rial data structure for non-conform configurations is another
possible direction of research that we will explore. The re-
sult will facilitate the design of CSG operators for meshed
shells.

7. Acknowledgement:

Many Thanks to Fabien Boutantin for the vase demo and
generating the "art nouveau" model; Wei-Ming Dong for the
chinese character in the vase demo.

References

[1] P. Baudelaire and M. Gangnet. Planar maps: An interaction
paradigm for graphic design. InProc. of CHI-89, pages 313–
318, Austin, TX, 1989.

[2] B. Baumgart. A Polyhedron Representation for Computer
Vision. In AFIPS Nat. Conf. Proc., volume 44, pages 589–
596, June 1975.

[3] C. Bruyns, S. Senger, A. Menon, K. Montgomery, S. Wil-
dermuth, and R. Boyle. A survey of interactive mesh-cutting
techniques and a new method for implementing generalized
interactive mesh cutting using virtual tools.Journal of Visu-
alization and Computer Animation, 13(1):21–42, 2002.

Figure 12. Creating a texture atlas with smooth boundaries. This improves both texture-mapping
methods and spline reconstruction. Left: texture atlas with jaggy boundaries; center: texture atlas
with geodesics; right: parameter space

[4] CGAL. Computational Geometry Algorithms Library. In
http://www.cs.ruu.nl/CGAL/index.html.

[5] J. Chen and Y. Han. Shortest paths on a polyhedron. InSixth
ACM Symposium on Computational Geometry, 1990.

[6] J. Edmonds. A Combinatorial Representation for Polyhedral
Surfaces.Notices Amer. Math. Soc., 7, 1960.

[7] G. Farin. Curves & Surfaces for CAGD: A Practical Guide.
Morgan Kaufmann, 2002.

[8] M. S. Floater and K. Hormann. Surface parameterization:
a tutorial and survey. In N. A. Dodgson, M. S. Floater,
and M. A. Sabin, editors,Advances in Multiresolution for
Geometric Modelling, Mathematics and Visualization, pages
157–186. Springer, Berlin, Heidelberg, 2005.

[9] M. Gangnet, J.-C. Hervé, T. Pudet, and J.-M. V. Thong. In-
cremental computation of planar maps.Computer Graphics,
23(3):345–354, 1989.

[10] Graphite. Inhttp://www.loria.fr/∼levy/Graphite/index.html,
2003.

[11] X. Gu, S. Gortler, and H. Hoppe. Geometry images.ACM
SIGGRAPH, pages 355–361, 2002.

[12] M. Hofer and H. Pottmann. Energy-minimizing splines in
manifolds.ACM SIGGRAPH, pages 284 – 293, 2004.

[13] T. Kanai and H. Suzuki. Approximate shortest path on a
polyhederal surface and its application. InComputer-Aided
Design, vol. 33, pages 801–811, 2001.

[14] B. Kaneva and J. O’Rourke. An implementation of chen and
han’s shortest paths algorithm.12th Canadian Conference
on Computational Geometry, 2000.

[15] S. Kapoor. Efficient computation of geodesic shortest paths.
In 32nd Annual ACM Symposium on Theory of Computing,
1999.

[16] L. Kettner. Designing a data structure for polyhedral sur-
faces. InProc 14th Annu. ACM Sympos. Comput. Geom.,
pages 146–154, 1998.

[17] R. Kimmel and J. Sethian. Fast marching methods on trian-
gulated domains.Proc. National Academy of Sciences, pages
8341–8435, 1998.

[18] D. Kirsanov, S. Gortler, and H. Hoppe. Fast exact and ap-
proximate geodesic paths on meshes. InHarvard University
Computer Science TR 10-04, 2004.

[19] Y. Lee, S. Lee, and A. Shamir. Intelligent mesh scissoring
using 3d snakes.Pacific Graphics 04, 2004.

[20] P. Lienhardt. N-Dimensional Generalized Combinatorial
Maps and Cellular Quasi-Manifolds.Journal on Computa-
tional Geometry and Applications, 4(3):275–324, 1994.

[21] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation. In
Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 362–371. ACM
Press, 2002.

[22] W. Massey.A Basic Course in Algebraic Topology. Springer
Verlag, 1991.

[23] J. Mitani and H. Suzuki. Making papercraft toys from
meshes using strip-based approximate unfolding.ACM SIG-
GRAPH, 2004.

[24] J. Mitchell, D. Mount, and C. Paradimitriou. The discrete
geodesic problem. InSIAM J. Computing, 1987.

[25] M. Mortara, G. Patane, M. Spagnuolo, B. Falcidieno, and
J. Rossignac. Blowing bubbles for the multiscale analysis
and decomposition of triangle-meshes.Algorithmica vol 38
no.1, 2004.

[26] M. Mortara, G. Patane, M. Spagnuolo, B. Falcidieno, and
J. Rossignac. Plumber: A method for a multi-scale decompo-
sition of 3d shapes into tubular primitives and bodies.ACM
Symposium on Solid Modeling, 2004.

[27] F. Neyret and M. P. Cani. Pattern-based texturing revisited.
ACM SIGGRAPH, 1999.

