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Résumé— Cette communication est le pendant discret d’une
technique algébrique récente d’identification paramétrique
pour systèmes linéaires stationnaires et continus. On y ac-
corde une importance particulière aux applications, en cal-
culant, grâce à la transformation enz, un identifieur en ligne
pour un système d’ordren. Le dispositif de laboratoire est
d’ordre cinq. La transformation bilinéaire de Tustin permet
de contrecarrer l’instabilité numérique due à un échantillon-
nage trop rapide. Les programmes de mise en œuvre, où le
calcul formel joue un rôle important, sont disponibles.
Abstract— An algebraic framework for continuous-time li-
near systems identification introduced in the literature some
years ago has revealed as an interesting alternative way
for on-line parameter identification. The present contribu-
tion aims at conveying those ideas to linear time-invariant
discrete-time systems, with particular emphasis attachedto
application issues. To this end, an on-line linear identifier for
n-th order systems is evolved, re-sorting to the operationalre-
presentation of the dynamics. Being discussed on the basis of
a fifth-order model of a drive-train, the numerical condition of
the obtained setting of the identifier is found to suffer signifi-
cantly with decreasing sampling times. A setting not experien-
cing these numerical problems is finally introduced by means
of a re-parametrization of the identifier via application ofthe
bilinear Tustin transform. The already implemented computer
programs, where computer algebra plays an important role,
are available.
Zusammenfassung— Dieser Aufsatz stellt ein zeitdiskretes
Gegenstück zu der in der gegenwärtigen Literatur für zeitkon-
tinuierliche lineare zeitinvariante Systeme vorgestellten alge-
braischen Identifikationsmethodik dar. Die Ausführungen zur
Herleitung der on-line Identifikation für Systeme der Ord-
nungn erfolgen imz-Bereich. Besonderes Augenmerk dieser
Arbeit ist den Untersuchungen im Hinblick auf die Anwen-
dung, illustriert anhand eines als Laborexperiment verfügba-
ren Modells fünfter Ordnung eines Antriebsstranges, gewid-
met. Es zeigt sich, daß für die gewählte Parametrierung die
numerische Kondition mit abnehmender Abtastzeit deutlich
leidet. Dies kann jedoch durch Neu-Parametrierung mittels
q-Transformation umgangen werden. Eine Implementierung
der vorgestellten Methodik via Computer-Algebra ist verfüg-
bar.
Resumen— Esta comunicación representa la contraparte
discreta de una técnica algebraica de identificación para-
métrica, recientemente introducida para el caso de los siste-
mas lineales estacionarios continuos. Damos una importan-
cia particular a las aplicaciones y calculamos, gracias a la
transformadaz, un identificador en linea para un sistema de
ordenn. El ejemplo de laboratorio presentado es de orden
cinco. La transformación bilineal de Tutsin permite contra-

restar la inestabilidad numérica debida al muestreo rápido.
Se encuentran disponibles los programas de implementación
donde el álgebra computacional juega un papel importante.

Mots-clés—Systèmes linéaires discrets, transformation enz,
transformation bilinéaire de Tustin, identification paramé-
trique, identifieur en ligne, échantillonnage rapide, calcul for-
mel.
Key words— Discrete-time linear systems,z-transform, bili-
near Tustin transform, parameter identification, on-line iden-
tifier, rapid sampling, computer algebra.
Schlüsselwörter— Zeitdiskrete lineare Systeme,z-Transfor-
mation, q-Transformation, Parameteridentifikation, on-line
Identifikation, schnelle Abtastung, Computer-Algebra.
Palabras clave— Sistemas lineales en tiempo discreto. trans-
formadaz, transformada bilineal de Tutsin, identificación de
parámetros, identificador en linea, muestreo rápido, algebra
computacional.

I. I NTRODUCTION

This contribution further develops recent works on discrete-
time parameter identification (see [14] and [6]). It is a counter-
part, augmented with application issues, of [4], [5], whichper-
mits for linear time-invariant continuous-time systems, thanks
to algebraic methods, to achieve
– on-line parametric identification,
– robustness with respect to noisy data without knowing the

statistical properties of the corrupting noises (see [2] for
further details).

Remark I.1 See, e.g., [2] for references on related results
in various fields such as state and parameter estimation
for nonlinear systems, linear and nonlinear fault diagnosis,
signal and image processing.

In accordance to the continuous-time framework, the opera-
tional representation of the discrete-time constant linear sys-
tem (in thez-domain) is considered. Initial conditions are al-
lowed to being ignored by taking derivatives with respect to
the shift operatorz. To determine the unknown system para-
meters, subsequent iterated summations of the discrete-time
counterpart of the resulting operational equation are carried
out to set up a system of linear equations, referred to as linear
identifier. The presentation is evolved for a generaln-th order
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discrete-time constant linear dynamics. To cope with measu-
rement noise, besides the possibility of a straightforwardin-
corporation of linear filters, the setup of an over-determined
system of linear equations by means of additional iterated
summations qualifies to be suitable.
On the basis of a fifth-order model of a drive-train, which
is available as a laboratory experiment, the problem of in-
accurate estimation of those system zeros, which have only
minor effect on the system response, and, hence, are diffi-
cult to estimate in presence of noise, is illustrated. Additio-
nally, it is found that the identifier parameterized in terms
of the z-domain parameters, i.e., the coefficients of the sys-
tem’s difference equation, exhibits increasingly poor numeri-
cal condition emerging with decreasing sampling times. This
numerical issue of thez-domain setting might become appa-
rent by reflecting the relationzi = exp (siTa) between the
polessi of the continuous-time system and the poleszi of
the according discrete-time representation. Hence, with de-
creasing sampling timeTa, the poleszi approach the point
z = 1. In order to overcome this numerical problem, a sui-
table re-parametrization of the identifier is sought for and
found in terms of the bilinear Tustin transform, also referred
to asq-transform for short in linear systems theory (see, e.g.,
[12] for a related transform). Again referring to the drive-train
example it is shown that theq-domain setting of the identifier
does not experience numerical deficiencies in case of small
sampling times.
To cope with the problem of inaccurate estimation of “ines-
sential” zeros, the idea to discarding (or pre-setting) those ze-
ros, based on a-priori knowledge from modeling, is proposed.
This approach is first discussed on the basis of theq-domain
setting and then transferred to thez-domain framework ac-
cordingly. The motivation for discussing this idea for theq-
domain case first simply is that, by virtue of the close simi-
larity to the continuous-time domain, things might be parti-
cularly apparent from the control engineer’s point of view.
This idea of pre-setting those non-essential zeros to obtain a
“reduced-order” linear identifier is shown to provide particu-
lar attractiveness. The corresponding computer programs are
available.
The accuracy of our identification results is demonstrated by
inspecting the tight correspondence of measurement and si-
mulation of a drive-train control application, with the control-
ler designed on the basis of the identified dynamics using a
simple loop-shaping procedure (see, e.g., [7], [9]).

II. A LINEAR IDENTIFIER FORn-TH ORDER

DISCRETE-TIME SISO LTI SYSTEMS

Consider a linear time-invariant discrete-time SISO system of
ordern
∑n

i=0
aiyk+i =

∑m

i=0
biuk+i, m ≤ n, an = 1 (1)

For estimating the unknown parameters

λT = [a0, . . . , an−1, b0, . . . , bm]

we start with thez-domain representation of system (1),
which yields an identification approach motivated by [4], [5].
Consider a sequence(fk), where fk = 0 for k < 0.
The formal Laurent seriesfz (z) =

∑

∞

i=0 fiz
−i, called

the z-transform of(fk), is written fz • ◦ (fk) for short.

With (fk+i) ◦ • zi
(

fz −
∑i−1

j=0 fjz
−j
)

, andA (z) = zn +
∑n−1

i=0 aiz
i, B (z) =

∑m

i=0 biz
i, thez-domain counterpart of

Equation (1) is

A (z) yz −
∑n

i=0
aiz

i
∑i−1

j=0
yjz

−j =

= B (z)uz −
∑m

i=0
biz

i
∑i−1

j=0
ujz

−j (2)

and the associated transfer function is

G (z) =
yz (z)

uz (z)
=

B (z)

A (z)

Correspondingly to the continuous-time framework of [4],
[5], derivatives w.r.t.z, of ordern̄ ≥ n + 1, are taken on both
sides of Equation (2) in order to eliminate the initial condi-
tions yj, j = 0, . . . n − 1, anduj, j = 0, . . .m − 1. (Ac-
cordingly, one might think, e.g., of first dividing both sides
of Equation (2) byz, followed by ann times differentiation
w.r.t. z, in order to meet this objective).
By carrying out the derivative of order̄n ≥ n + 1 on both
sides of Equation (2) (the detailed calculations are given in
the appendix) and finally transferring the result back to the
discrete-time domain, we end up with

(

∏n̄−1

s=0
(k − n + s)

){

yk +
∑n−1

i=0
yk−n+iai−

−
∑m

i=0
uk−n+ibi

}

= 0 (3)

For determining the setλ of parameters, Equation (3) is
subject toN ≥ n + m fold iterated summation (corres-
pondingly to the iterated integrals of [4]) to assemble a set
of (N + 1) linear equations,P (k)λ = Q (k), also refer-
red to as an(on-line) linear identifier. So, with χ (k) =
∏n̄−1

s=0 (k − n + s), the first row of P and Q is given as
P1,i+1 (k) = χ (k) yk−n+i, i = 0, . . . , n−1, P1,n+j+1 (k) =
−χ (k)uk−n+j , j = 0, . . . , m, Q1 (k) = −χ (k) yk. The
subsequent rows readP1+l,i (k) =

∑k−1
r=0 Pl,i (r), l =

1, . . . , N , i = 1, . . . , n + m + 1, with an according ex-
pression forQ. The reason for optionally setting up an over-
determined system of linear equations (by choosingN >
n + m) is the following: it provides an improved accuracy
for the estimates in presence of noisy signals. Section V will
deal with some related issues.

III. R E-PARAMETERIZING THE PROBLEM VIA

APPLICATION OF THETUSTIN TRANSFORM

Given a continuous-time systemG (s) with polessi, then the
poles of the according discrete-time systemG (z) are located
at zi = exp (siTa). Thus, with a decreasing sampling time
Ta, the poleszi approach1. The objective of the following
discussions is to introduce a suitable re-parametrizationof the
proposed identification method, namely via application of the
bilinear Tustin transformC → C,

z =
1 + q/Ω0

1 − q/Ω0
, q = Ω0

z − 1

z + 1
, Ω0 =

2

Ta

(4)
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in order to avoid poor numerical conditioning emerging with
decreasing sampling times. Section VI-A will illustrate these
(numerical) issues on the basis of a “drive-train” example.
Let

Ǵ# (q) = G (z)|
z=

1+q/Ω0
1−q/Ω0

denote theq-domain transfer function, with the prime arran-
ged to indicate the representation in terms ofλ. Clearly, an
(n − m)-fold zero atq = Ω0 occurs. Next, arrange a change
of the parameters to re-castǴ# (q) as

G# (q) =
(1 − q/Ω0)

n−m∑m
i=0 Biq

i

1 +
∑n

i=1 Aiqi

represented in terms of the parameters{Ai, Bi}. Notice that,
given a continuous-time systemG (s), the approximation
G# (jΩ) ≈ G (jω), with Ω = (2/Ta) tan (ωTa/2), holds for
|ωTa| ≪ 1. Let s = a be a pole ofG (s), then the according
pole of G# (q) is ã = Ω0 tanh (a/Ω0). This observation
draws a close link between theq-domain and thes-domain
scenario.
The following idea will be crucial for additionally increa-
sing the performance of the identifier (to be illustrated in
Section VI-A). Being particularly apparent in theq-domain
setting from the control engineer’s point of view, one may
discard, except for the(n − m)-fold zero atΩ0, those zeros
of G# (q) which only have minor influence on the system
response, and, hence, are difficult to estimate in presence of
noise. This idea of discarding the “inessential” zeros a-priori
(based on knowledge obtained from modeling) will be accor-
dingly transferred to thez-domain setting in Section IV.
So, the point of departure for theq-domain setting of the
identification approach, incorporating the (optional) feature
of discarding “inessential” zeros, is set as

G̃# (q) =
(1 − q/Ω0)

n−m∑m̃

i=0 B̃iq
i

1 +
∑n

i=1 Aiqi
, m̃ ≤ m (5)

with the tilde indicating the approximation ofG# (q). Next,
we will trace back to thez-domain solution, and re-cast (3) in
terms of theq-domain parameters

ΛT =
[

A1, . . . , An, B̃0, . . . , B̃m̃

]

To this end, let us first determine the parameter transforma-
tion. Thez-domain transfer function (withan 6= 1 in general)
according toG̃# (q) reads

G (z) =
2n−m

∑m̃

i=0 B̃iΩ
i
0 (z − 1)

i
(z + 1)

m−i

(z + 1)n +
∑n

i=1 AiΩi
0 (z − 1)i (z + 1)n−i

=

=

∑m
s=0 bsz

s

∑n

s=0 aszs
(6)

By referring to the binomial theorem, we obtain the relations
between the(n + m + 2) coefficients{as, bs} of (6) and the
(n + m̃ + 1) parametersΛ as

bs =
m̃
∑

i=0

Πb
s,iB̃i, s = 0, . . . , m

as =

(

n

s

)

+

n
∑

i=1

Πa
s,iAi, s = 0, . . . , n

(7)

with

Πb
s,i = 2n−m (−Ω0)

i
s
∑

j=0

(−1)
s+j

(

i

s − j

)(

m − i

j

)

,

Πa
s,i = (−Ω0)

i
s
∑

j=0

(−1)s+j

(

i

s − j

)(

n − i

j

)

(8)

Plugging the transformation (7, 8) into (3) (notice that (3)
has to be slightly adapted so as to allow for arbitraryan),
we finally find

χ (k)

{

n
∑

r=0

(

n

r

)

yk−n+r +

n
∑

i=1

(

n
∑

r=0

yk−n+rΠ
a
r,i

)

Ai−

−
m̃
∑

i=0

(

m
∑

r=0

uk−n+rΠ
b
r,i

)

B̃i

}

= 0 (9)

The procedure of setting up the linear identifier by means
of iterated summation of (9), and the solution forΛ as well,
proceeds as discussed in Section II.

IV. T HE z-DOMAIN SETTING – CONT’ D

The idea to (optionally) a-priori discarding “inessential” ze-
ros will now be equivalently applied to thez-domain setting,
i.e., the parametrization in terms ofλ, continuing Section II.
Clearly, by (4), discarding certain zeros ofG# (q), i.e. shif-
ting those zeros to infinity, corresponds to placing the associa-
ted zeros ofG (z) at z = −1. Now, introduce the counterpart
of (5),

G̃ (z) =
(z + 1)

m−m̃∑m̃

i=0 b̃iz
i

∑n

i=0 aizi
=

∑m

i=0 biz
i

∑n

i=0 aizi

with the tilde indicating the approximation ofG (z). The
linear map relating the parametersb̃T = [b̃0 . . . b̃m̃] to the
numerator coefficientsbT = [b0 . . . bm] is represented as
b = Ξbb̃. Let λ̃T = [a0, . . . , an−1, b̃0, . . . , b̃m̃], thenλ = Ξλ̃
with Ξ = diag (En×n, Ξb), and the linear identifier reads
P̃ λ̃ = Q, with P̃ = PΞ.

V. ROBUSTNESS WITH RESPECT TO NOISY DATA

In presence of noisy signals, the composition of the identifier
as a “square” system of linear equations, i.e.,N = n + m
or N = n + m̃ respectively, via iterated summation of
(3) or (9), might not yield accurate (or even appropriate)
estimates. For instance, this is the case for the drive-train
example to be investigated in Section VI-A. We will address
here some possibilities (which might of course be combined)
for improving the performance of the proposed identification
method in presence of noisy signals:

1. Instead of taking iterated summations on (3) or (9),
i.e., iterated application of1/ (z − 1) in the z-domain,
one might more generally iteratively apply (filters of
the type) 1/ (z − γ) (or even higher-order ones) for
denoising.

2. “Invariant filtering” (see, e.g., [5]): Each row of the
linear identifierP (k)λ = Q (k) (or its counterparts
of Sections III and IV) might be pre-processed with a
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filter, suitably adjusted utilizing (a-priori) knowledge of
the system dynamics.

3. Instead of setting up a “square” linear identifer, one
might chooseN ≫ n + m (or N ≫ n + m̃, resp.) to set
up an over-determined system (in the presence of noise)
and solve, e.g., for a least-squares solution to (the under-
determined linear system)Pλ− e = Q, i.e.,minλ ‖e‖2

2,
which isλ = (PT P )−1PT Q.

4. Clearly, the “first few” equations of the linear identi-
fier are obviously more affected by noises than the sub-
sequent ones. This is due to the effect of the iterated sum-
mations (or the iterated filters of item 1). So, one might
think of discarding the “first”α equations from the para-
meter calculation.

The combination of the items 3 and 4 might read as follows:
Set up a number ofN = n + m̃ + α + β equations (either by
means of iterated summation or filtering), withβ denoting the
number of additional equations added due to item 3. Hence,
from the(1 + N) equations, the equations no.(α + 1) up to
(1 + N), i.e., a number of1 + N − α = 1 + n + m̃ + β
equations, are used for calculating the(1 + n + m̃) unknown
parameters (in the least-squares sense).

Remark V.1 Several aspects of the above discussion are
nothing else but a discrete-time interpretation of the viewpoint
expounded in [2], where noises are considered as highly
fluctuating, or oscillating, phenomena. Let us emphasize once
more that we do not need any statistical knowledge of the
noises.

Remark V.2 See [10], [11] for a most illuminating compa-
rison between continuous-time algebraic identification me-
thods and least-square techniques.

VI. A PPLICATION AND DISCUSSION

A. Identification

To illustrate the behavior of the presented approach to
discrete-time linear systems identification, and, in particular,
to reveal some subtleties involved, we will finally discuss a
selected application available as a laboratory experiment.

Θ1 Θ2 Θ3

c1 c2

ω

permanent-magnet
dc motor

u

Fig. 1. The lab model “drive-train”.

Consider the model of a drive train as depicted in Figure 1.
The parameters of the lab setup are as follows: LA = 896µH
(armature inductance),RA = 6.38Ω (armature resistance),
km = 41 · 10−3Nm/A (torque constant),c1 = c2 = 1.72 ·
10−3Nm/rad (spring coefficients),Θ1 = 25.65·10−6kgm2,
Θ2 = 6.44 · 10−6kgm2, Θ3 = 5.1 · 10−6kgm2 (moments
of inertia of the rotors), andd1 = 3.98 · 10−6Nms, d2 =
0.92·10−6Nms, d3 = 2.4·10−6Nms (coefficients of viscous
friction, related to the bearings of the respective rotors). By
discarding the dynamics related to the electrical subsystem

in the sense of a singular perturbation point of view, the
dynamics of the drive-train are obtained asG (s) = ω̂/û,

G (s) =
V

(

1 + s
8.1

)

(

1 + 2ξ1s
ω1

+ s2

ω2
1

)(

1 + 2ξ2s
ω2

+ s2

ω2
2

)

with V = 23.7, ω1 = 12.4, ω2 = 27.7, ξ1 = 0.1 and
ξ2 = 0.0083. Thusn = 5, m = 4 for the according discrete-
time systemG (z).
The following examples (with̄n = n + 1) provide different
case studies regarding the choice of the parameterm̃ ≤ m
(for both the q- and z-domain setting) and the sampling
time Ta. In order to cope with noise, the combination of
the items 3 and 4 of Section V is applied, withα = 7 and
β = 10. Numerous case studies showed that for this example,
the use of the iterated summations (i.e.,γ = 1) is clearly
advantageous compared to the choiceγ 6= 1 of item 1 (of
Section V). The “invariant filtering approach” of item 2 was
found not to give significant further improvements (to the
setting as introduced above), so it is not applied within the
following case studies.
All equations of the identifier are normalized (by dividing
by the maximum absolute entry ofP of the respective row)
to improve the numerical conditioning. The linear on-line
identifiers start att = 0, and the pole-zero plots and Bode
diagrams of the identifiedz- andq-domain transfer functions
given in the figures are due toλ and Λ, evaluated at the
final time tend = 1.35s. The pole-zero plots of the nominal
dynamicsG (z), orG# (q) resp., associated toG (s) as given
above, will always be displayed in blue color.

Example VI.1 Setm̃ = m, Ta = 10ms. The simulation re-
sults given in Figure 2 are associated with the observation
that, in presence of noise (chosen as colored), the estimation
of the zeros which have minor influence on the system res-
ponse (see the subplot containing the system outputω) is very
poor. Additionally, it is found that, emerging with decreasing
sampling times, the numerical conditioning of the linear iden-
tifier parameterized in terms of thez-domain parametersλ
becomes increasingly worse, in contrast to theq-domain set-
ting. To illustrate this, the conditioning numbers ofP (i.e., the
ratio of the largest singular value ofP to the smallest) for the
z- andq-domain identifier, evaluated at the final timetend, for
different sampling times, are given in Table (10) (cols.2 and
3).

Ta [ms] z q z q
10 3.0e10 1.7e10 3.0e10 1.7e10
5 5.1e11 8.0e9 5.2e11 7.8e9
2 2.9e13 1.2e10 2.9e13 1.2e10
1 5.4e14 1.4e10 5.4e14 1.4e10

0.5 9.0e15 1.5e10 8.9e15 1.5e10

(10)

In order to show that these conditioning numbers are only
weakly affected by the noise added to the output signal, the
conditioning numbers obtained by noise-free simulations are
also given in Table (10) (cols.4 and5).

The first observation of Example VI.1 (inappropriate estima-
tion of the zeros in presence of noise), associated with the
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Fig. 2. (cf. Example VI.1) Simulation results,̃m = m, Ta = 10ms. Thez- andq-domain settings provide both good results.
Regarding the system dynamics in the “interesting” frequency domain, see the system response and the Bode diagrams.
However, the estimation of the zeros of both parameterizations is very inappropriate indeed.

knowledge obtained from modeling, is the motivation for ap-
plying the approximations of the numerators as proposed in
Sections III and IV. Notice that, by inspecting for instance
the Bode plots of the nominal drive-train dynamics in Figure
2, those mentioned zeros only affect the frequency responsein
the frequency domain with the magnitude

∣

∣G# (jΩ)
∣

∣ located
significantly below the zero dB line. The idea of discarding
those zeros is addressed in the following example.

Example VI.2 Setm̃ = 0 andTa = 10ms for the simulation
results given in Figure 3. The approach for discarding those
zeros having negligible effect on the system response is seen
to be appropriate (see in particular the subplot containingthe

system outputω). The estimation of the poles is again accu-
rate. Additionally, due to the reduced number of parameters,
this approach has also the advantage of having better numeri-
cal conditioning compared to the casẽm = m of the previous
example, illustrated by the condition numbers given in Table
(11).

Ta [ms] z q z q
10 1.8e7 2.3e7 1.9e7 2.3e7
5 6.0e8 2.7e7 5.8e8 2.7e7
2 3.5e10 3.0e7 3.5e10 3.0e7
1 6.4e11 3.1e7 6.4e11 3.1e7

0.5 1.1e13 3.2e7 1.1e13 3.2e7

(11)

Analogously to Table (10), cols.4 and 5 display the results
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Fig. 3. (cf. Example VI.2) Simulation results,̃m = 0, Ta = 10ms. The usefulness of the idea of approximating the numerator
in the sense of Sections III and IV is confirmed.

obtained with noise-free simulations. Again, the numerical
conditioning of thez-domain setting suffers with decreasing
sampling times, whereas the parametrization in terms ofΛ
does not show such problems.

Example VI.3 (measurement results) Set̃m = 0, Ta =
10ms. Figure 4 depicts the identification results obtained
from measurements of the “drive-train” lab model. The an-
gular velocityω is measured via an incremental encoder.

Let us end these case studies with some considerations on
the counterparts of the Examples VI.1 and VI.2 by invoking
the standard least-squares (LS) identification method (see,
e.g., [8]), which is briefly revisited now. Consider again

Equation (1). Introduce the (equation-) error(ek),

ek = yk −
(

−
∑n−1

i=0
yk−n+iai +

∑m

i=0
uk−n+ibi

)

=

= yk −
[

−hT
a,k hT

b,k

]

λ, (12)

with the so-called data vectorshT
a,k = [yk−n, . . . , yk−1] and

hT
b,k = [uk−n, . . . , uk−n+m]. TakingN + 1 measurements,

N > n + m, we end up with the (under-determined) system
of N + 1 linear equations







e0

...
eN






=







y0

...
yN






−







−hT
a,0 hT

b,0
...

...
−hT

a,N hT
b,N






λ, (13)
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Fig. 4. (cf. Example VI.3) Measurement results,m̃ = 0, Ta = 10ms.

or e = Q̄ − P̄ λ for short. The least-squares solution to (13),
λ =

(

P̄T P̄
)

−1
P̄T Q̄, finally gives the estimate forλ in the

senseminλ ‖e‖2
2.

One might also think of recasting this method in terms of the
q-domain parametersΛ. Start to this end from Equation (12),
adapted to allow for arbitraryan, and apply the transforma-
tion (7), (8) to obtain

ek =
n
∑

r=0

(

n

r

)

yk−n+r +
n
∑

i=1

(

n
∑

r=0

yk−n+rΠ
a
r,i

)

Ai−

−
m̃
∑

i=0

(

m
∑

r=0

uk−n+rΠ
b
r,i

)

B̃i. (14)

Example VI.4 (standard least-squares (LS) method (12)–
(14) ; m̃ = m, Ta = 10ms). The results obtained with the
same measurement data as given in Figure 4 are displayed
in Figure 5. They indicate poor performance (getting worse
with decreasing sampling times), even for the estimation of
the pole-pair related to the “slow eigenfrequency”.

Example VI.5 (standard LS method ;̃m = 0, Ta = 10ms).
This setting is found not to give any clear improvements
compared to the choicẽm = m of Example VI.4, thus, the
associated graphics are not displayed.

Remark VI.1 In order to achieve suitable results with the
LS identification method (in the case of the considered drive-
train example), it is advisable to increase the sampling
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Fig. 5. (cf. Example VI.4) Results obtained from measurements by invoking the standard least-squares (LS) method withm̃ = m,
Ta = 10ms. The representations in terms ofλ andΛ are entitled as “LS-z” and “LS-q” for short.

time, say, e.g., toTa = 50ms, additionally to articulately
increasing the “observation time span”.

Remark VI.2 The use of colored noises is a further confir-
mation that our denoising techniques are not limited to classic
Gaussian white noises (see [2] and several computer simula-
tions in the references therein).

B. Control application

Based on the identification result of the drive-train lab model
displayed in Figure 4, a controllerR (for the one-degree-of-
freedom standard control scheme) is now designed by means
of a loop-shaping procedure, i.e., a simple graphical method
based on Bode plots (see, e.g., [7], [9]). The design is carried
out in theq-domain. To this end, the transfer function (i.e., the
amplitude and phase response) ofL = RG of the open loop
is given a suitable shape so as to meet the closed loop design
objectives.
The following control design may be retraced via the Bode
plots of Figure 6. LetG# (q) denote the identifiedq-
domain transfer function of the drive-train due to Figure 4.
As the first design step, in order to cope with the fairly-
damped torsional oscillations of the drive-train system, the
according complex-conjugate pole-pairs−1.16 ± 12.5

√
−1

and −0.76 ± 26.34
√
−1 of G# (q) are compensated for.

Let us represent the polynomials associated with those
pole-pairs as1 + 2ξiq/ωi + (q/ωi)

2, i = 1, 2, with

(ω1 = 12.55rad/s, ξ1 = 0.0923) for the “slow” eigenfre-
quency and(ω2 = 26.35rad/s, ξ2 = 0.0289) for the “fast”
eigenmode, respectively. Typically, in view of robustnessis-
sues regarding performance, it is advisable not to exactly can-
cel out such pole-pairs1 + 2ξiq/ωi + (q/ωi)

2, but to install
(approximate) compensators, as, e.g.,

N#
i (q) =

1 + 2ξ̄iq/ωi + (q/ωi)
2

1 + 2ζiq/ωi + (q/ωi)
2

with ξ̄i ≥ ξi (“approximate” compensation as mentioned
above takes place for̄ξi > ξi) and0 < ζi ≤ 1. Compensators
of this type are usually also referred to asNotch filters.
In order to illustrate the quality of the identification result,
however, we will exactly cancel out the pole-pair related tothe
“slow” eigenfrequency viaN#

1 (q), i.e., setξ̄1 = ξ1, see also
Figure 6. The other pole-pair is compensated approximately
by settingξ̄2 = 1.5ξ2. For both Notch filters of the drive train
controller we chooseζi = 1, i = 1, 2. Finally, as the third part
of the controller, in order to achieve steady-state accuracy, we
add a transfer functionH of PI-type,

H# (q) = 0.08
1 + q/10

q

to obtain the controllerR = HN1N2. The Bode plot of
the open-loop transfer functionL = RG is also displayed
in Figure 6. The BIBO stability of the closed loopT =
L/ (1 + L) is immediately deduced by inspecting the phase
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Fig. 6. Control application : Bode plots of the identification
result for G# (q) due to the measurements of the lab
model (cf. Figure 4) ; and plots of the Notch filtersN1,
N2 and the open-loop transfer functionL = RG.

angle ofL# (jΩ) at the cutoff frequencyΩc = 1.78rad/s, i.e.,
arg L# (jΩc) = −120.7 deg. Measurement and simulation
results of the control loop subject to a step change of the
reference angular velocity are finally given in Figure 7.
Of course, more advanced design techniques, e.g. for decou-
pling the disturbance and tracking design, might be applied.
The primary objective of this simple control example howe-
ver was to emphasize, by means of measurement and simula-
tion results, the accuracy of the obtained identification result
which the control design was based upon.

VII. C ONCLUSION

A. Consequences of the algebraic setting

The setup of a linear identifier for discrete-time LTI SISO sys-
tems, evolving from an algebraic point of view, has been dis-
cussed and evaluated on the basis of case studies referring to
a fifth-order model of a drive-train. Two different parameteri-
zations have been investigated with regard to their numerical
conditioning, with theq-domain setting found to exhibiting
significant advantages, which become particularly apparent
with decreasing sampling times. This effect is observed inde-
pendently from whether or not the idea of pre-setting certain
zeros, which turned out as useful, is applied.
Though this algebraic approach provides promising results, it
is worth mentioning that, clearly, the linear identifier cannot
incorporate a-priori knowledge on stability. More concretely,
for the drive-train example, the pole-pair related to the “fast
eigenfrequency” is located very close to the stability margin,
hence, in presence of noisy signals, the estimated pole-pair
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Fig. 7. Control application : measurement and simulation
results of the control system subject to a step change of
the reference angular velocity.

might be found to shift beyond the stability margin.
Finally, it should be mentioned that the discussed method
provides easy-to-implement on-line identifiers. A computer-
algebra implementation of this approach, associated with
notes on implementation issues, is available at
http://regpro.mechatronik.uni-linz.ac.at

B. Improvement of the mathematical formalism

Future publications will give a more intrinsic algebraic pic-
ture of those parametric identification methods. It will thus
provide a better understanding of their connections with
flatness-based predictive control for discrete-time linear sys-
tems ([3], [13]) and with structural properties as derived from
the module-theoretic standpoint (see, e.g., [1], [3] and the re-
ferences therein).

VIII. A PPENDIX: THE DETAILED CALCULATIONS OF

SECTION II

The following calculations are given to retrace the appearance
of (3) by takingn̄ ≥ n + 1 derivatives on (2) w.r.t.z. Let
(·)(j) = (∂z)

j
(·), ∂z = ∂/∂z, and notice that

zjf (j)
z • ◦ (−1)

j

((

∏j−1

s=0
(k + s)

)

fk

)

(15)

Then, taking the derivatives on both sides of (2) yields
(Ayz)

(n̄) = (Buz)
(n̄), and, by virtue of Leibniz’ product rule,

n
∑

j=0

(

n̄

j

)

A(j)y(n̄−j)
z =

m
∑

j=0

(

n̄

j

)

B(j)u(n̄−j)
z (16)
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noticing thatA(j) (z) = 0, j > n, and B(j) (z) = 0,
j > m. With A(j) =

∑n
s=j

s!
(s−j)!asz

s−j and B(j) =
∑m

s=j
s!

(s−j)!bsz
s−j, Equation (16) takes the form

n̄!

n
∑

j=0

z−jy
(n̄−j)
z

(n̄ − j)!

n
∑

s=j

(

s

j

)

asz
s =

= n̄!
m
∑

j=0

z−ju
(n̄−j)
z

(n̄ − j)!

m
∑

s=j

(

s

j

)

bsz
s (17)

To further proceed with (17), and, in particular, in view of fa-
cilitating the transformation back to the discrete-time domain,
let F

(j)
z

.
= zjf

(j)
z /j!, (Fz , (fk)) ∈ {(Yz, (yk)) , (Uz, (uk))}.

Notice thatF (j)
z • ◦ (−1)j

j!

((

∏j−1
s=0 (k + s)

)

fk

)

by (15).

Multiply both sides of Equation (17) byzn̄−n. Then, by re-
arrangement of the sums for collecting the parametersai,
i = 0, . . . , n − 1 (notice thatan = 1 by (1)), andbi,
i = 0, . . . , m, we obtain

n−1
∑

i=0

zi−n



n̄!

i
∑

j=0

(

i

j

)

Y (n̄−j)
z



 ai−

−
m
∑

i=0

zi−n



n̄!

i
∑

j=0

(

i

j

)

U (n̄−j)
z



 bi =

= −n̄!

n
∑

j=0

(

n

j

)

Y (n̄−j)
z (18)

Before proceeding with (18), first notice that the identity

i
∑

j=0

(

i

j

)

(−1)
−j

n̄!

(n̄ − j)!

i−j−1
∏

s=0

(k − n + n̄ + s) =

i−1
∏

s=0

(k − n + s)

holds (with n̄ involved in the left-hand side cancelling out).
Then, re-sorting to the expressions of (18) associated to the
parameters{ai, bi}, we have

zi−nn̄!

i
∑

j=0

(

i

j

)

F (n̄−j)
z • ◦

(−1)
n̄

(

i−1
∏

s=0

(k − n + s)

)(

n̄−1
∏

s=i

(k − n + s)

)

fk−n+i =

= (−1)
n̄

χ (k) fk−n+i

and, hence, the validity of (3).
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