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Résumé— Cette communication est le pendant discret d’'une restar la inestabilidad numérica debida al muestreo rapido
technique algébrique récente d’identification paramétédq  Se encuentran disponibles los programas de implementacién
pour systemes lineaires stationnaires et continus. On y ac-donde el dlgebra computacional juega un papel importante.

corde une importance particuliére aux applications, en-cal 15 cles— Systémes linéaires discrets, transformation.en
culant, grac?‘a la téqn%forml_au%r)em u_?f%en}lﬂéaur(tan_llgnet transformation bilinéaire de Tustin, identification parém
pour un systeme dordre. L€ dISPosItil de laboraloire est g, e identifieur en ligne, échantillonnage rapide, adlifor-
d’ordre cing. La transformation bilinéaire de Tustin perme . oF

de contrecarrer l'instabilit€ numérique due a un échantil oy \words— Discrete-time linear systemsgransform, bili-
nage trop rapide. Les programmes de mise en ceuvre, ou le o2 T stin transform, parameter identification, on-lidem-
calcul formel joue un réle important, sont disponibles. tifier, rapid sampling, computer algebra.

Abstract— An algebraic framework for continuous-time li- - geopjysselworter— Zeitdiskrete lineare SystemeJransfor-
near systems identification introduced in the literaturengo |\~ ¢-Transformation, Parameteridentifikation, on-line

years ago has revealed as an interesting alternative Way |qentifikation, schnelle Abtastung, Computer-Algebra.

for on-line parameter identification. The present contibu pgjapras clave— Sistemas lineales en tiempo discreto. trans-

29” aitmst. at CO“\{eyi”Q tht?fe idt?asl to "”eﬁf time;itnva”g”t formadaz, transformada bilineal de Tutsin, identificacion de
iscrete-time systems, with particular emphasis attadoed 5 s metros, identificador en linea, muestreo rapido, atgeb
application issues. To this end, an on-line linear identifoe computacional.

n-th order systems is evolved, re-sorting to the operatiosal
presentation of the dynamics. Being discussed on the bfsis o

a fifth-order model of a drive-train, the numerical conditiof |
the obtained setting of the identifier is found to suffer gign

cantly with decreasing sampling times. A setting notemeri  Thjs contribution further develops recent works on dissret

cing these numerical problems is finally introduced by means . . e :
of a re-parametrization of the identifier via applicationtae _Ume parameteridentification (see [14] and [6]). Itis a cmun

bilinear Tustin transform. The already implemented coraput  Part, augmented with application issues, of [4], [5], whpeln-
programs, where computer algebra plays an important role, mits for linear time-invariant continuous-time systerhsrtks
are available. to algebraic methods, to achieve

Zusammenfassung- Dieser Aufsatz stellt ein zeitdiskretes _ . jine parametric identification

Gegenstiick zu der in der gegenwartigen Literatur flr zeitko . ! . .
tinuierliche lineare zeitinvariante Systeme vorgestellalge- ~ — robustness with respect to noisy data without knowing the
braischen Identifikationsmethodik dar. Die Ausfiihrungem z ~ Statistical properties of the corrupting noises (see [2] fo
Herleitung der on-line Identifikation fir Systeme der Ord-  further details).

nungn erfolgen imz-Bereich. Besonderes Augenmerk dieser

Arbeit ist den Untersuchungen im Hinblick auf die Anwen-

dung, illustriert anhand eines als Laborexperiment vebiéig =~ Remark 1.1 See, e.g., [2] for references on related results
ren Modells finfter Ordnung eines Antriebsstranges, gewid iy various fields such as state and parameter estimation

met. Es zeigt sich, daf3 fir die gewahlte Parametrierung die ; ; : : :
numerische Kondition mit abnehmender Abtastzeit deutlichfqr honlinear systems, linear and nonlinear fault diagrsosi

leidet. Dies kann jedoch durch Neu-Parametrierung mittels Signal and image processing.

g-Transformation umgangen werden. Eine Implementierung

der vorgestellten Methodik via Computer-Algebra ist vg+fli  In accordance to the continuous-time framework, the opera-
bar. L tional representation of the discrete-time constant lisya-
Resumer— Esta comunicacion representa la contraparte tem (in thez-domain) is considered. Initial conditions are al-

discreta de una técnica algebraica de identificacion para- o . o .
métrica, recientemente introducida para el caso de logsist 10wed to being ignored by taking derivatives with respect to

mas lineales estacionarios continuos. Damos una importan-the shift operator. To determine the unknown system para-
cia particular a las aplicaciones y calculamos, gracias a la meters, subsequent iterated summations of the discrate-ti
transformadae, un identificador en linea para un sistema de  counterpart of the resulting operational equation areiagrr

ordenn. El ejemplo de laboratorio presentado es de orden ¢ ¢4 set up a system of linear equations, referred to aarline

cinco. La transformacion bilineal de Tutsin permite contra . - L
P identifier. The presentation is evolved for a generdh order

. INTRODUCTION
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discrete-time constant linear dynamics. To cope with measu the z-transform of (fx), is written f, e—o (f;) for short.
rement noise, besides the possibility of a straightforward  \yjith (Frpi) o—e 2 (fz _ Zté szfj)' andA (z) = 2" +
corporation of linear filters, the setup of an over-deteedin =

system of linear equations by means of additional iterated
summations qualifies to be suitable.

On the basis of a fifth-order model of a drive-train, which . i

is available as a laboratory experiment, the prpblem ofin- A(z)y, — Zl_ aizlz,_ yjz =

accurate estimation of those system zeros, which have only =0 =0 _

minor effect on the system response, and, hence, are diffi- = B(2)u, — Zm bzt Zf’l ujz= (2)
cult to estimate in presence of noise, is illustrated. Addit =0 j=0

nally, it is found that the identifier parameterized in terms
of the z-domain parameters, i.e., the coefficients of the sys-
tem’s difference equation, exhibits increasingly poor edm

cal condition emerging with decreasing sampling timessThi
numerical issue of the-domain setting might become appa-
rent by reflecting the relation; = exp (s;T,,) between the ~ Correspondingly to the continuous-time framework of [4],
poless; of the continuous-time system and the potesf [5], derivatives w.r.tz, of ordern > n + 1, are taken on both
the according discrete-time representation. Hence, waéth d sides of Equation (2) in order to eliminate the initial condi
creasing sampling tim&,, the polesz; approach the point  tionsy;, j = 0,...n — 1, andu;, j = 0,...m — 1. (Ac-

z = 1. In order to overcome this numerical problem, a sui- cordingly, one might think, e.g., of first dividing both sile
table re-parametrization of the identifier is sought for and of Equation (2) byz, followed by ann times differentiation
found in terms of the bilinear Tustin transform, also rederr ~ W.I.t. z, in order to meet this objective).

to asg-transform for short in linear systems theory (see, e.g., By carrying out the derivative of order > n 4 1 on both
[12] for a related transform). Again referring to the drivain sides of Equation (2) (the detailed calculations are given i
example it is shown that thedomain setting of the identifier  the appendix) and finally transferring the result back to the
does not experience numerical deficiencies in case of smaldiscrete-time domain, we end up with

sampling times.

To cope with the problem of inaccurate estimation of “ines- n—1 n—1

sential” zeros, the idea to discarding (or pre-settingpéwe- <Hs_o (k —n+ 5)) {yk + Zi:() Yk—ntii—

ros, based on a-priori knowledge from modeling, is proposed m

This approach is first discussed on the basis ofztdemain N Zizo “’f—"ﬂ'b‘} =0 (3
setting and then transferred to thedomain framework ac-

cordingly. The motivation for discussing this idea for the ~ FOr determining the sed of parameters, Equation (3) is
domain case first simply is that, by virtue of the close simi- Subject toN'" > n + m fold iterated summation (corres-
larity to the continuous-time domain, things might be parti Pondingly to the iterated integrals of [4]) to assemble a set
cularly apparent from the control engineer's point of view. Of (N +1) linear equationsP (k) A\ = Q (k), also refer-
This idea of pre-setting those non-essential zeros tombtai  'ed to as an(on-line) linear identifier So, with x (k) =
“reduced-order” linear identifier is shown to provide peuwti [17=; (k —n+s), the first row of P and Q is given as

lar attractiveness. The corresponding computer prograens a P1,i+1 (k) = X (k) Yk—n+i, 1 = 0,...,n—=1, Py nyjy1 (k) =

S aizt, B(z) = 7 biz', thez-domain counterpart of
Equation (1) is

and the associated transfer function is

_ Y (2) - B (z)

uy (z2)  A(z)

G (2)

a.VaiIabIe. —X (k) Uk—n+7j, .7 = 0) ..., MM, Ql (k) = =X (k) Yk The

The accuracy of our identification results is demonstrated b subsequent rows reaé.;; (k) = Zf;éPl,i (r), Il =

inspecting the tight correspondence of measurement and si4,...,N, ¢ = 1,...,n + m + 1, with an according ex-

mulation of a drive-train control application, with the doi- pression for). The reason for optionally setting up an over-

ler designed on the basis of the identified dynamics using adetermined system of linear equations (by chooswg>

simple loop-shaping procedure (see, e.g., [7], [9]). n + m) is the following it provides an improved accuracy
for the estimates in presence of noisy signals. Section V wil

Il. A LINEAR IDENTIFIER FORn-TH ORDER deal with some related issues.
DISCRETETIME SISO LTI SYSTEMS
Consider a linear time-invariant discrete-time SISO sysé lIl. RE-PARAMETERIZING THE PROBLEM VIA
ordern APPLICATION OF THETUSTIN TRANSFORM

Zn QiYkti = Zm biug+i, m<mn, a,=1 (1) Given a continuous_—time_ syste@l_(s) with poless;, then the
i—g iUt i=0 LR =" On poles of the according discrete-time systériz) are located
at z; = exp (s;T,). Thus, with a decreasing sampling time
T,, the polesz; approachl. The objective of the following
M =Tag,...,an_1,b0,...,bpn] discussions is to introduce a suitable re-parametrizafitime

_ ) ) proposed identification method, namely via applicatiorhef t
we start with thez-domain representation of system (1), pijlinear Tustin transforn€ — C,

which yields an identification approach motivated by [4], [5
Consider a sequencgfy), where f, = 0 for & < 0.  1+q/Q z—1
The formal Laurent seriey. (z) = > .o, fiz~*, called z

For estimating the unknown parameters

-3 0 - 1 4
17(]/90 4 OZ+1 ( )

2
QO:E
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in order to avoid poor numerical conditioning emerging with with
decreasing sampling times. Section VI-A will illustratese s ' .
(numerical) issues on the basis of a “drive-train” example. b _  gn-m (790)1' (71>s+j < t ) (m - Z>
Let ot

é# (q) =G (Z)|Z_ 1+4q/Q0 s i i (8)

T 1-4q/9Q e — 0 i 1 s+j 2 n—1i
denote the;-domain transfer function, with the prime arran- ~s:¢ — (=) (1) s—j j
ged to indicate the representation in terms\ofClearly, an
(n —m)-fold zero atg = €y occurs. Next, arrange a change pjygging the transformation (7, 8) into (3) (notice that (3)

of the parameters to re-cast* (q) as has to be slightly adapted so as to allow for arbitrary,
n—m —m i we finally find
o# (g = L= 9/ W) " T, Big Y
L+370, Aig!

n n n n
represented in terms of the parametifls, B; }. Notice that, X () {Z (T)yk—7L+7‘ + (Z y’f—"*"H?yi) Ai—
given a continuous-time systei (s), the approximation r=0 i =1 Ar=0
G* () ~ G (jw), with Q = (2/T,) tan (wT,/2), holds for (& ~
|wTs| <<) 1. Le(ts =abea pole/oC (s), ihen/thza according B Z <Z “’“””Hi,i> Bl} =0 9
pole of G# (¢) is @ = Qptanh (a/fp). This observation
draws a close link between thiedomain and the-domain  The procedure of setting up the linear identifier by means
scenario. of iterated summation of (9), and the solution foras well,
The following idea will be crucial for additionally increa- proceeds as discussed in Section II.
sing the performance of the identifier (to be illustrated in
Section VI-A). Being particularly apparent in tledomain IV. THE 2-DOMAIN SETTING — CONT' D

setting from the control engineer's point of view, one may The jdea to (optionally) a-priori discarding “inesseritizé-
discard, except for then — m)-fold zero at€), those zeros  ros will now be equivalently applied to thedomain setting,
of G¥ (¢) which only have minor influence on the system je  the parametrization in terms &f continuing Section I1.
response, a_nd, henge, are difficult_to estim_ate in prgsefnce OClearly, by (4), discarding certain zeros Gf (¢), i.e. shif-
noise. This idea of discarding the “inessential” zerosiafpr  ting those zeros to infinity, corresponds to placing the @iaso

dingly transferred to the-domain setting in Section IV. of (5),

So, the point of departure for thedomain setting of the
identification approach, incorporating the (optional)ttea

i=0 \r=0

(z + 1)777,7771 Zio bt B S bzt

i i “i ial” i é (Z) = n N - m Z
of discarding “inessential” zeros, is set as S iz S iz
n—m m g
G# (q) = (1 —q/S%) _ Zz‘:_O Biq ., m<m (5) with the tilde indicating the approximation af (z). The
L+, Aig linear map relating the parametérS = [b,...bs] to the
L o .
with the tilde indicating the approximation 6# (¢). Next, ~ humerator cggfﬂmentﬁ = lbo...bm] is represented as
we will trace back to the-domain solution, and re-cast (3) in b = Zpb. Let'A = [ao, .- an—1,bo,. e bﬁl]’_the”,)f = EA
terms of thej-domain parameters with = = diag (E"*",Zy), and the linear identifier reads

PX\ = Q,with P = PE.
AT =|Ay,...,A., Bo,..., By
V. ROBUSTNESS WITH RESPECT TO NOISY DATA
To this end, let us first determine the parameter transforma-|, presence of noisy signals, the composition of the idemtifi
tion. Thez-domain transfer function (with,, # 1in general) as a “square” system of linear equations, .= n + m
according taG# (g) reads or N = n + m respectively, via iterated summation of

o . . 3) or (9), might not yield accurate (or even appropriate
gn—m Zrn BZQ(L) (Z— 1)1 (Z+1)m 3 ( ) ( ) 9 Yy ( pp p )

G(z) = i=0 : _ _ estimates. For instance, this is the case for the drive-trai
+D)"+3 A (-1 (z+1)"" example to be investigated in Section VI-A. We will address
S s here some possibilities (which might of course be combined)
= ﬁ (6)  forimproving the performance of the proposed identificatio
s=0 “'s

method in presence of noisy signals
By referring to the binomial theorem, we obtain the relasion

between thén + m + 2) coefficients{as, b5} of (6) and the
(n +m + 1) parameterd as

1. Instead of taking iterated summations on (3) or (9),
i.e., iterated application of/ (z — 1) in the z-domain,
one might more generally iteratively apply (filters of

m . the type)1/(z —~) (or even higher-order ones) for
bs = Zﬂi,iBiv §=0,....,m denoising.
=0 (7) 2. “Invariant filtering’ (see, e.g., [5]) Each row of the

a, = (”) + ZHgiAi’ s=0,....n linear identifier P (k) A = Q (k) (or its counterparts
S - of Sections Il and 1V) might be pre-processed with a
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filter, suitably adjusted utilizing (a-priori) knowledgé o
the system dynamics.

3. Instead of setting up a “square” linear identifer, one
might chooseV > n+m (or N > n + 1, resp.) to set

up an over-determined system (in the presence of noise)

in the sense of a singular perturbation point of view, the
dynamics of the drive-train are obtained@sés) = &/,

(e (1+ %)

14
+ ) (14 ey
w3 wa

G(s)= s

and solve, e.g., for a least-squares solution to (the under-

determined linear systenA — e = @, i.e.,minjy HeHg,
whichis\ = (PTP)~1PTQ.
4. Clearly, the “first few” equations of the linear identi-

fier are obviously more affected by noises than the sub-

with V' = 23.7, wy 12.4, wo 27.7, &1 = 0.1 and
& = 0.0083. Thusn = 5, m = 4 for the according discrete-
time systenty (z).

The following examples (witl = n + 1) provide different

sequentones. This is due to the effect of the iterated sum-Case studies regarding the choice of the parametet m

mations (or the iterated filters of item 1). So, one might
think of discarding the “firstx equations from the para-
meter calculation.

The combination of the items 3 and 4 might read as follows
Set up a number aV = n + m + o + G equations (either by
means of iterated summation or filtering), witldenoting the

(for both the ¢- and z-domain setting) and the sampling
time T,. In order to cope with noise, the combination of
the items 3 and 4 of Section V is applied, with= 7 and

B = 10. Numerous case studies showed that for this example,
the use of the iterated summations (i-e.= 1) is clearly
advantageous compared to the chojcet 1 of item 1 (of
Section V). The “invariant filtering approach” of item 2 was

number of additional equations added due to item 3. Hencefound not to give significant further improvements (to the

from the (1 + V) equations, the equations ne: + 1) up to
(1+N),ie,anumberol + N —a=14+n+m+p
equations, are used for calculating thet n + ) unknown
parameters (in the least-squares sense).

setting as introduced above), so it is not applied within the
following case studies.

All equations of the identifier are normalized (by dividing

by the maximum absolute entry & of the respective row)

to improve the numerical conditioning. The linear on-line

Remark V.1 Several aspects of the above discussion are jgentifiers start at = 0, and the pole-zero plots and Bode

nothing else but a discrete-time interpretation of the yieimt

diagrams of the identified- andg¢-domain transfer functions

expounded in [2], where noises are considered as highly given in the figures are due td and A, evaluated at the

fluctuating, or oscillating, phenomena. Let us emphasize on

final timet.,q = 1.35s. The pole-zero plots of the nominal

more that we do not need any statistical knowledge of the gynamics7 (), or G# (¢) resp., associated (& (s) as given

noises.

Remark V.2 See [10], [11] for a most illuminating compa-
rison between continuous-time algebraic identification me
thods and least-square techniques.

VI. APPLICATION AND DISCUSSION

A. ldentification

above, will always be displayed in blue color.

Example VI.1 Setrh = m, T, = 10ms. The simulation re-
sults given in Figure 2 are associated with the observation
that, in presence of noise (chosen as colored), the estimati
of the zeros which have minor influence on the system res-
ponse (see the subplot containing the system outpistvery
poor. Additionally, it is found that, emerging with decreas

To illustrate the behavior of the presented approach tosamplingtimes, the numerical conditioning of the lineaarie

discrete-time linear systems identification, and, in patér,
to reveal some subtleties involved, we will finally discuss a
selected application available as a laboratory experiment

permanent-magnet
dc motor

0,

P

O3

Fig. 1. The lab model “drive-train”.

Consider the model of a drive train as depicted in Figure 1.
The parameters of the lab setup are as foltawg = 896 H
(armature inductance4 = 6.38C) (armature resistance),
km = 41-1073Nm/A (torque constanty;; = ¢, = 1.72 -
1073 Nm/rad (spring coefficients)p; = 25.65-10~%kgm?,

Oy = 6.44 - 107 %kgm?, ©3 = 5.1 - 10~ kgm? (moments

of inertia of the rotors), and; = 3.98 - 1075 Nms, dy =
0.92-10"%Nms, d3 = 2.4-1075 N'ms (coefficients of viscous
friction, related to the bearings of the respective rotoBs)
discarding the dynamics related to the electrical subsyste

tifier parameterized in terms of thedomain parameters
becomes increasingly worse, in contrast to fh@omain set-
ting. To illustrate this, the conditioning numbersf{i.e., the
ratio of the largest singular value d? to the smallest) for the
z- andg-domain identifier, evaluated at the final tirhg 4, for
different sampling times, are given in Table (10) (c@lsind
3).

Tolms] | =z g | = q
10 3.0e10  1.7¢10 | 3.0e10 1.7el0
) 5.1ell  8.0e9 | 5.2ell  7.8e9 (10)
2 2.9el3 1.2e10 | 2.9e13 1.2e10
1 5.4el4 1.4el0 | 5.4eld 1.4el0
0.5 9.0e15 1.5e10 | 8.9e15 1.5el0

In order to show that these conditioning numbers are only
weakly affected by the noise added to the output signal, the
conditioning numbers obtained by noise-free simulatioes a
also given in Table (10) (cold.and5).

The first observation of Example V1.1 (inappropriate estima
tion of the zeros in presence of noise), associated with the
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—120 L1 [ L1 [ —540 L1 L1 [ —
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
Q= Qg tan (w/Q) [rad/s] Q= Qg tan (w/Q) [rad/s]

Fig. 2. (cf. Example VI.1) Simulation resultg; = m, T, = 10ms. The z- andg-domain settings provide both good results.
Regarding the system dynamics in the “interesting” fregyesfomain, see the system response and the Bode diagrams.
However, the estimation of the zeros of both parametedratis very inappropriate indeed.

knowledge obtained from modeling, is the motivation for ap- system output). The estimation of the poles is again accu-
plying the approximations of the numerators as proposed inrate. Additionally, due to the reduced number of parameters
Sections Il and IV. Notice that, by inspecting for instance this approach has also the advantage of having better numeri
the Bode plots of the nominal drive-train dynamics in Figure cal conditioning compared to the cage= m of the previous

2, those mentioned zeros only affect the frequency resgonse example, illustrated by the condition numbers given in dabl
the frequency domain with the magnitufie” (j)| located  (11).
significantly below the zero dB line. The idea of discarding

. ; : Talms] | =z ¢ | = q
h he foll le. a
those zeros is addressed in the following example 10 T8 337 | 1057 3307
5 6.0e8  2.7e7 | 5.8e8 2.7¢7 (11)

. . 2 .bel . .Hel .
Example V1.2 Setn = 0 and7T, = 10ms for the simulation 3.5e10 - 3.0e7 | 3.5e10  3.0e7
Its ai in Ei 3 Th h for di ding th 1 6.4ell 3.1e7 | 6.4ell 3.1e7
results given in Figure 3. The approach for discarding those 05 L1e13 3.2¢7 | 11013 3.2¢7

zeros having negligible effect on the system response fis see
to be appropriate (see in particular the subplot containihg Analogously to Table (10), cold.and 5 display the results
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Fig. 3. (cf. Example VI.2) Simulation resultg; = 0, T,, = 10ms. The usefulness of the idea of approximating the numerator
in the sense of Sections Ill and IV is confirmed.

obtained with noise-free simulations. Again, the numérica Equation (1). Introduce the (equation-) erfey),
conditioning of thez-domain setting suffers with decreasing

sampling times, whereas the parametrization in term4 of _ A e o m 2\
does not show such problems. € = Yk Z':o Yk—na+idi + Zi:O Uk=nibi | =

Yk — [ fhaT,k hbT,k })\, (12)

Example V1.3 (measurement results) Sét = 0, T, = . -
10ms. Figure 4 depicts the identification results obtained with the so-called data vectors ;. = [yx—n, .., yx—1] and

from measurements of the “drive-train” lab model. The an- Mk = [Uk—n. .- Uk—ntm]. Taking N 4- 1 measurements,
gular velocityw is measured via an incremental encoder. N > n +m, we end up with the (under-determined) system
of N + 1 linear equations

Let us end these case studies with some considerations on e _pT nT
the counterparts of the Examples VI.1 and V1.2 by invoking 0 o @0 70
the standard least-squares (LS) identification method, (see =1 - : : A (13)
e.g., [8]), which is briefly revisited now. Consider again en YN —hl N By
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Fig. 4. (cf. Example VI.3) Measurement resutlis = 0, 7, = 10ms.

ore = Q — P for short. The least-squares solution to (13), Example VI.4 (standard least-squares (LS) method (12)-
A\ = (1’5T15)_1 PT(Q, finally gives the estimate fox in the ~ (14);m = m, T, = 10ms). The results obtained with the
sensemnin H€||§- same measurement data as given in Figure 4 are displayed
One might also think of recasting this method in terms of the in Figure 5. They indicate poor performance (getting worse

g-domain parameters. Start to this end from Equation (12), with decregsing sampling Eimes), even for the e;stimation of
adapted to allow for arbitrary,,, and apply the transforma- the pole-pair related to the “slow eigenfrequency”.
tion (7), (8) to obtain
Example VI.5 (standard LS methodih = 0, T, = 10m.s).
n This setting is found not to give any clear improvements
( yk_n+,.H;‘f’i> A; compared to the choicé&s = m of Example V1.4, thus, the
r=0 associated graphics are not displayed.

€k = Z (Z) Yk—n+r + Z

r=0 i=1

_ b | B

; <Z_% u’“"JrTHT’Z) Bi. (14) Remark VI.1 In order to achieve suitable results with the
= LS identification method (in the case of the considered drive

train example), it is advisable to increase the sampling



Journées Identification et Modélisation ExpérimentaleE’IM06 — 16 et 17 novembre — Poitiers

300 30 -
2 LS-q (red LS-¢q (detail
200 s 20
X
1 100 10 X
=0 £ 0 . £ 0
= £ e@m £
. —100 ~10 NE
—200 © —20
-2
—300 —30 5
0 02040608 1 1.214 -6e3 -4e3 -2e3 0e0 2e3 -10 -8 -6 -4 -2 0
t [s] Re Re
80 1 1
40 AN Y LS-z (red) LS-z (detail)
i xuyf“\ 0.5 - 0.5
7 oL ¥ -
-CES \ 7 £ 0 @2@{ £ 0 3
3 _40 3 “— X X
w meas.%> o
—0.5 —0.5
—-80 |- LS-¢ -
LSz -
~120 [ T N _1 ]
0 02040608 1 1.214 —25—20—-15-10—-5 0 5 -0.5 0 0.5 1 1.5
t[s] Re Re

Fig. 5. (cf. Example VI1.4) Results obtained from measuremibyinvoking the standard least-squares (LS) method#wvita m,
T, = 10ms. The representations in termso&ndA are entitled as “LS:" and “LS-¢" for short.

time, say, e.g., td, = 50ms, additionally to articulately (w1 = 12.55rad/s, & = 0.0923) for the “slow” eigenfre-
increasing the “observation time span”. quency and(ws = 26.35rad/s, {2 = 0.0289) for the “fast”
eigenmode, respectively. Typically, in view of robustnisss

] ) ~suesregarding performance, it is advisable not to exaatly c
Remark V1.2 The use of colored noises is a further confir-  ce| out such pole-pairs + 2¢;q/w; + (¢/w;)?, but to install

mation that our denoising techniques are notlimited tosias  (approximate) compensators, as, e.g.,
Gaussian white noises (see [2] and several computer simula-

tions in the references therein). 1+ 26q/w; + (q/wi)2

1+ 2Gq/wi + (g/wi)?

N7 (0)
B. Control application

with & > & (“approximate” compensation as mentioned
above takes place f@r > &;) and0 < ¢; < 1. Compensators
of this type are usually also referred to B®tch filters

T order to illustrate the quality of the identification résu
however, we will exactly cancel out the pole-pair relatethi
“slow” eigenfrequency vid\fl# (q), i.e., sett; = &, see also

Based on the identification result of the drive-train lab elod
displayed in Figure 4, a controlld? (for the one-degree-of-
freedom standard control scheme) is now designed by mean
of a loop-shaping procedure, i.e., a simple graphical netho
based on Bode plots (see, e.g., [7], [9]). The design isexrri

out in theg-domain. To this end, the transfer function (i.e., the Figure 6. The other pole-pair is compensated approximately
amplitude and phase responseYof- R of the open loop by settingé, = 1.5&,. For both Notch filters of the drive train

l)sbgjg;\(/;?/:\ssunable shape so as to meet the closed loop des'grcgontroller we choosé;, = 1,4 = 1, 2. Finally, as the third part
) ) ) of the controller, in order to achieve steady-state acgivee

The foIIOW|_ng control design may be retrace(_j V|a_t_he Bode add a transfer functiofl of PI-type,

plots of Figure 6. LetG* (¢q) denote the identifieds-

domain transfer function of the drive-train due to Figure 4. "

As the first design step, in order to cope with the fairly- H7 (q) =0.08

damped torsional oscillations of the drive-train systehe, t

according complex-conjugate pole-pairg.16 + 12.5y/—1 to obtain the controlle®R = HN;Ns. The Bode plot of

and —0.76 + 26.34/—1 of G* (q) are compensated for. the open-loop transfer functioh = RG is also displayed

Let us represent the polynomials associated with thosein Figure 6. The BIBO stability of the closed lodp =

pole-pairs asl + 2&q/wi + (g/wi)’, i = 1,2, with L/ (1+ L) is immediately deduced by inspecting the phase

1+¢/10
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Fig. 6. Control application : Bode plots of the identificatio Fig. 7. Control application : measurement and simulation
result for G# (¢) due to the measurements of the lab results of the control system subject to a step change of
model (cf. Figure 4); and plots of the Notch filtel§, the reference angular velocity.

N and the open-loop transfer functidn= RG.

might be found to shift beyond the stability margin.
angle ofL# (jQ) at the cutoff frequenc@. = 1.78rad/s, i.e., Finally, it should be mentioned that the discussed method
arg L# (jQ.) = —120.7 deg. Measurement and simulation provides easy-to-implement on-line identifiers. A compute
results of the control loop subject to a step change of thealgebra implementation of this approach, associated with
reference angular velocity are finally given in Figure 7. notes on implementation issues, is available at
Of course, more advanced design techniques, e.g. for decouht t p: / / r egpr o. mechat r oni k. uni -1i nz. ac. at
pling the disturbance and tracking design, might be applied . ]
The primary objective of this simple control example howe- B. Improvement of the mathematical formalism
ver was to emphasize, by means of measurement and simulaguture publications will give a more intrinsic algebraic-pi
tion results, the accuracy of the obtained identificatisulte  ture of those parametric identification methods. It will shu
which the control design was based upon. provide a better understanding of their connections with
flatness-based predictive control for discrete-time lireyes-
tems ([3], [13]) and with structural properties as derivieiri
A. Consequences of the algebraic setting the module-theoretic standpoint (see, e.qg., [1], [3] ardré&’
ferences therein).

VIl. CONCLUSION

The setup of a linear identifier for discrete-time LTI SIS@sy
tems, evolving from an algebraic point of view, has been dis-
cussed and evaluated on the basis of case studies referring t
a fifth-order model of a drive-train. Two different paranrete ) ) _
zations have been investigated with regard to their nuraleric The following calculations are given to retrace the appezga
conditioning, with theg-domain setting found to exhibiting  ©f (3) by takingn > n + 1 derivatives on (2) w.r.tz. Let
significant advantages, which become particularly apgaren ()9 = (3,) (-), 8, = 8/82, and notice that

with decreasing sampling times. This effect is observedind _

pendently from whether or not the idea of pre-setting certai A f9) e—o (—1) ((Hﬂl (k + 8)) fk> (15)
zeros, which turned out as useful, is applied. s=0

Though this algebraic approach provides promising restilts
is worth mentioning that, clearly, the linear identifier nah
incorporate a-priori knowledge on stability. More conetgt
for the drive-train example, the pole-pair related to thestf no m,

eigenfrequency” is located very close to the stability nrarg Z (n) AW y(r=i) — Z <”> BWy=9)  (16)
hence, in presence of noisy signals, the estimated pote-pai =0 \J =0

VIIl. A PPENDIX: THE DETAILED CALCULATIONS OF
SECTION I

Then, taking the derivatives on both sides of (2) yields
(Ayz)(") = (Buz)("), and, by virtue of Leibniz’ productrule,
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noticing thatA¥) (z) = 0, j > n, and BY) (2) = 0,
j > m. With AU = Y7 (éSJ),asz —J and BY) =

PR = ]),b 2577, Equation (16) takes the form
*j (rL J)

n s .
ZO (n— j)! ;(j)asz a

m (n—j) m

:mz%z

(S_>bszs (17)
= = =\

To further proceed with (17), and, in particular, in view af f
cilitating the transformation back to the discrete-timenin,

let i) = zjf§j)/j!, (F%, (fr)) € {( (k) (Uz, (ur)) }-
Notice that {7 e—o (1 ((H Lk +s) ) fk) by (15).

Multiply both sides of Equation (17) by®~". Then, by re-
arrangement of the sums for collecting the parameigrs
i = 0,...,n — 1 (notice thata, = 1 by (1)), andb;,
i:O,...,m,weobtam

()

( >U(n J) b; =
i=0 §j=0

— —”'Z( )Y(” 7 (18)

Before proceeding with (18), first notice that the identity

n'z

7=0

: i _1)_jﬁ! i—j—1 ) i
Z(a)((ﬁ T (e=nensn=T[tnso

holds (with#n involved in the left-hand side cancelling out).

Then, re-sorting to the expressions of (18) associatedeto th

parameterga;, b; }, we have

A

(-)" ﬁ(k—nJrs) ﬁ(kfnJrs) Sr—nti =
s=0 s=1i
= (=1)" x (k) fa-n-+i

and, hence, the validity of (3).
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