D. H. Bailey, A Fortran 90-based multiprecision system, ACM Transactions on Mathematical Software, vol.21, issue.4, pp.379-387, 1995.
DOI : 10.1145/212066.212075

K. Briggs, The doubledouble library, 1998.

I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian et al., Brook for GPUs: Stream computing on graphics hardware, Proceedings of SIGGRAPH 2004, pp.777-786, 2004.

C. Cebenoyan, Floating point specials on the GPU, 2005.

D. Defour and F. De-dinechin, Software Carry-Save: A Case Study for Instruction-Level Parallelism, 7th conference on parallel computing technologies, 2003.
DOI : 10.1007/978-3-540-45145-7_18

T. J. Dekker, A floating-point technique for extending the available precision, Numerische Mathematik, vol.5, issue.3, pp.224-242, 1971.
DOI : 10.1007/BF01397083

T. Granlund, GNU multiple precision arithmetic library

R. Fernando and M. J. Kilgard, The Cg Tutorial: The Definitive Guide to Programmable Real- Time Graphics, 2003.

D. Goddeke, R. Strzodka, and S. Turek, Accelerating double precision fem simulations with GPUs, Proceedings of ASIM 2005 -18th Symposium on Simulation Technique, 2005.

D. Goldberg, What every computer scientist should know about floating-point arithmetic, ACM Computing Surveys, vol.23, issue.1, pp.5-47, 1991.
DOI : 10.1145/103162.103163

Y. Hida, X. Li, and D. H. Bailey, Algorithms for quad-double precision floating point arithmetic, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, pp.155-162, 2001.
DOI : 10.1109/ARITH.2001.930115

K. Hillesland and A. Lastra, GPU floating-point paranoia, ACM Workshop on General Purpose Computing on Graphics Processors, p.8, 2004.

D. Knuth, The Art of Computer Programming Seminumerical Algorithms, 1998.

C. Lauter, Basic building blocks for a triple-double intermediate format, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070314

F. Stuart, M. Oberman, and . Siu, A high-performance area-efficient multifunction interpolator, Proceedings of the 17th IEEE Symposium on Computer Arithmetic (Cap Cod, USA), pp.272-279, 2005.

D. M. Priest, Algorithms for arbitrary precision floating point arithmetic, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic, pp.132-144, 1991.
DOI : 10.1109/ARITH.1991.145549

J. R. Shewchuk, Adaptive precision floating-point arithmetic and fast robust geometric predicates, Discrete and Computational Geometry, pp.305-363, 1997.

R. Strzodka, Virtual 16 bit precise operations on rgba8 textures, Proceedings of Vision, Modeling, and Visualization, pp.171-178, 2002.

]. O. Referencesabe70 and . Aberth, Computable analysis and differential equations, Intuitionism and Proof Theory Studies in Logic and the Foundations of Mathematics, pp.47-52, 1970.

O. Aberth-[-bb85-]-e, D. S. Bishop, ]. Bridgesko91, and . Ko, The failure in computable analysis of a classical existence theorem for differential equations Constructive Analysis Theory of Ordinary Differential Equations, Proc. Amer. Math. Soc. Computational Complexity of Real Functions. Birkhäuser, vol.30, pp.151-156, 1955.

M. B. Pour-el and J. I. Richards, A computable ordinary differential equation which possesses no computable solution, Annals of Mathematical Logic, vol.17, issue.1-2, pp.61-90, 1979.
DOI : 10.1016/0003-4843(79)90021-4

J. [. Pour-el and . Richards, The wave equation with computable initial data such that its unique solution is not computable, Advances in Mathematics, vol.39, issue.3, pp.215-239, 1981.
DOI : 10.1016/0001-8708(81)90001-3

M. B. Pour-el and J. I. Richards, Computability in Analysis and Physics, 1989.

K. Ruohonen, AN EFFECTIVE CAUCHY-PEANO EXISTENCE THEOREM FOR UNIQUE SOLUTIONS, International Journal of Foundations of Computer Science, vol.07, issue.02, pp.151-160, 1996.
DOI : 10.1142/S0129054196000129

A. M. Turing, On computable numbers, with an application to the Entscheidungsproblem, Proc. London Math. Soc, pp.230-265, 1936.

K. Weihrauch, Computable Analysis: an Introduction, 2000.

K. Weihrauch and N. Zhong, Is wave propagation computable or can wave computers beat the Turing machine? Proc, pp.312-332, 2002.

R. 1. Bultmann, W. Haller, H. Wetter, and A. Wörner, Binary and decimal adder unit, US Patent no US6292819, 2001.

F. Y. Busaba, C. A. Krygowski, W. H. Li, E. M. Schwarz, and S. R. Carlough, The IBM z900 decimal arithmetic unit, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256), pp.1335-1339, 2001.
DOI : 10.1109/ACSSC.2001.987708

F. Y. Busaba, T. Slegel, S. Carlough, C. Krygowski, and J. G. , The design of the fixed point unit for the z990 microprocessor, Proceedins of the 14th ACM Great Lakes symposium on VLSI , GLSVLSI '04, pp.364-367, 2004.
DOI : 10.1145/988952.989040

M. A. Check and T. J. Slegel, Custom S/390 G5 and G6 microprocessors, IBM Journal of Research and Development, vol.43, issue.5.6, pp.671-680, 1999.
DOI : 10.1147/rd.435.0671

M. F. Cowlishaw, Decimal floating-point: algorism for computers, 16th IEEE Symposium on Computer Arithmetic, 2003. Proceedings., pp.104-111, 2003.
DOI : 10.1109/ARITH.2003.1207666

W. Haller, U. Krauch, T. Ludwig, and H. Wetter, Combined binary/decimal adder unit, 1999.

C. Ieee-standards, Draft revision of the IEEE Standard for Floating?Point Arithmetic, 2006.

S. Knowles, A family of adders, Proceedings of the 15 th IEEE Symposium on Computer Arithmetic, pp.277-284, 2001.

S. K. Mathew, M. Anders, R. K. Krishnamurthy, and S. Borkar, A 4-GHz 130-nm address generation unit with 32-bit sparse-tree adder core, IEEE Journal of Solid-State Circuits, vol.38, issue.5, pp.689-695, 2003.
DOI : 10.1109/JSSC.2003.810056

M. Schmookler and A. Weinberger, High Speed Decimal Addition, IEEE Transactions on Computers, vol.20, issue.8, pp.862-866, 1971.
DOI : 10.1109/T-C.1971.223362

I. E. Sutherland, R. F. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS Circuits, 1999.

J. Thompson, N. Karra, and M. J. Schulte, A 64-bit Decimal Floating-Point Adder (extended version), Proceedings of the IEEE Computer Society Annual Symposium on VLSI, pp.297-298, 2004.

J. M. Muller, Elementary Functions, Algorithms and Implementation, 1997.
URL : https://hal.archives-ouvertes.fr/ensl-00000008

N. Brisebarre, D. Defour, P. Kornerup, J. M. Muller, and N. , A new range-reduction algorithm, IEEE Transactions on Computers, vol.54, issue.3, pp.331-339, 2005.
DOI : 10.1109/TC.2005.36

URL : https://hal.archives-ouvertes.fr/ensl-00086904

W. Cody and W. Waite, Software Manual for the Elementary Functions, N. J, 1980.

M. Daumas, C. Mazenc, X. Merrheim, and J. M. Muller, Modular Range Reduction: a New Algorithm for Fast and Accurate Computation of the Elementary Functions, J. Universal Computer Science, vol.1, pp.162-175, 1995.
DOI : 10.1007/978-3-642-80350-5_15

M. Payne and R. Hanek, Radian reduction for trigonometric functions, ACM SIGNUM Newsletter, vol.18, issue.1, pp.19-24, 1983.
DOI : 10.1145/1057600.1057602

J. Villalba, T. Lang, and M. A. González, Double-residue modular range reduction for floating-point hardware implementations, IEEE Transactions on Computers, vol.55, issue.3, pp.254-267, 2006.
DOI : 10.1109/TC.2006.38

J. Villalba, Diseño de arquitecturas CORDIC multidimensionales, 1995.

D. Milos, T. Ercegovac, and . Lang, Digital Arithmetic, 2004.

E. Chang, S. W. Choi, D. Kwon, H. Park, and C. K. Yap, Shortest paths for disc obstacles is computable, 21st ACM Symp. on Comp. Geometry, pp.116-125, 2005.

M. Hofer, B. Odehnal, H. Pottmann, T. Steiner, and J. Wallner, 3D shape recognition and reconstruction based on line element geometry, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.1532-1538, 2005.
DOI : 10.1109/ICCV.2005.2

E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, Izvestiya: Mathematics, vol.62, issue.4, pp.723-772, 1998.
DOI : 10.1070/IM1998v062n04ABEH000190

S. Mick and O. , Interpolation of helical patches by kinematic rational B??zier patches, Computers & Graphics, vol.14, issue.2, pp.275-280, 1990.
DOI : 10.1016/0097-8493(90)90038-Y

J. T. Schwartz and M. Sharir, On the ???piano movers??? problem. II. General techniques for computing topological properties of real algebraic manifolds, Advances in Applied Mathematics, vol.4, issue.3, pp.298-351, 1983.
DOI : 10.1016/0196-8858(83)90014-3

V. Shapiro, Solid Modeling, Handbook of Computer Aided Geometric Design, 2002.
DOI : 10.1016/B978-044451104-1/50021-6

M. Waldschmidt, Transcendence measures for exponentials and logarithms, Journal of the Australian Mathematical Society, vol.28, issue.04, pp.445-465, 1978.
DOI : 10.1007/BF01361554

M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups, Series of Comprehensive Studies in Mathematics, vol.326, 2000.
DOI : 10.1007/978-3-662-11569-5

C. K. Yap, Robust geometric computation, Handbook of Discrete and Computational Geometry, chapter 41, pp.927-952, 2004.

A. Ieee, Standard 754-1985 for Binary Floating-Point Arithmetic (also IEC 60559), 1985.

K. Braune, Standard Functions for Real and Complex Point and Interval Arguments with Dynamic Accuracy, Scientific Computation with automatic result verification, pp.159-184, 1988.
DOI : 10.1007/978-3-7091-6957-5_15

M. Cornea, J. Harrison, and P. T. Tang, Scientific Computing on Itanium-based Systems, 2002.

F. De-dinechin, A. Ershov, and N. Gast, Towards the Post-Ultimate libm, 17th IEEE Symposium on Computer Arithmetic (ARITH'05), pp.288-295, 2005.
DOI : 10.1109/ARITH.2005.46

URL : https://hal.archives-ouvertes.fr/inria-00070636

F. De-dinechin, C. Q. Lauter, and G. Melquiond, Assisted verification of elementary functions, 2005.
URL : https://hal.archives-ouvertes.fr/inria-00070330

F. De-dinechin, C. Q. Lauter, and J. Muller, Fast and correctly rounded logarithms in double-precision, Theoretical Informatics and Applications, 2006.
DOI : 10.1051/ita:2007003

URL : https://hal.archives-ouvertes.fr/inria-00070331

A. G. Ershov and T. P. Kashevarova, Interval Mathematical Library Based on Chebyshev and Taylor Series Expansion, Reliable Computing, vol.11, issue.5, pp.359-367, 2005.
DOI : 10.1007/s11155-005-0042-3

S. Gal, Computing elementary functions: A new approach for achieving high accuracy and good performance, Accurate Scientific Computations, pp.1-16, 1986.
DOI : 10.1007/3-540-16798-6_1

J. Harrison, Floating point verification in HOL light: The exponential function, 1997.
DOI : 10.1007/BFb0000475

W. Hofschuster and W. Krämer, FI LIB, eine schnelle und portable Funktionsbibliothek für reelle Argumente und reelle Intervalle im IEEE-double-Format, 1998.

W. Krämer, Inverse Standard Functions for Real and Complex Point and Interval Arguments with Dynamic Accuracy, Scientific Computation with automatic result verification, pp.185-211, 1988.
DOI : 10.1007/978-3-7091-6957-5_16

V. Lefèvre, J. Muller, and A. Tisserand, Toward correctly rounded transcendentals, IEEE Transactions on Computers, vol.47, issue.11, pp.1235-1243, 1998.
DOI : 10.1109/12.736435

R. Li, P. Markstein, J. P. Okada, and J. W. Thomas, The libm library and floating-point arithmetic for HP-UX on Itanium, 2001.

P. Markstein, IA-64 and Elementary Functions: Speed and Precision. Hewlett-Packard Professional Books, 2000.

J. Muller, Elementary Functions, Algorithms and Implementation, 1997.
URL : https://hal.archives-ouvertes.fr/ensl-00000008

D. M. Priest, Fast table-driven algorithms for interval elementary functions, Proceedings 13th IEEE Sympsoium on Computer Arithmetic, pp.168-174, 1997.
DOI : 10.1109/ARITH.1997.614892

N. Revol and F. Rouillier, Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library, Workshop on Validated Computing, pp.155-161, 2002.
DOI : 10.1007/s11155-005-6891-y

URL : https://hal.archives-ouvertes.fr/inria-00100985

S. M. Rump, Rigorous and portable standard functions, BIT Numerical Mathematics, vol.41, issue.3, 2001.

S. Story and P. T. Tang, New algorithms for improved transcendental functions on IA-64, Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336), pp.4-11, 1999.
DOI : 10.1109/ARITH.1999.762822

P. T. Tang, Table-driven implementation of the exponential function in IEEE floating-point arithmetic, ACM Transactions on Mathematical Software, vol.15, issue.2, pp.144-157, 1989.
DOI : 10.1145/63522.214389

P. T. Tang, Table-driven implementation of the logarithm function in IEEE floating-point arithmetic, ACM Transactions on Mathematical Software, vol.16, issue.4, pp.378-400, 1990.
DOI : 10.1145/98267.98294

A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded last bit, ACM Transactions on Mathematical Software, vol.17, issue.3, pp.410-423, 1991.
DOI : 10.1145/114697.116813

C. Iordache, P. T. , and P. Tang, An Overview of Floating-Point Support and Math Library on the Intel Xscale TM Architecture, Proc. 16th IEEE Symposium on Computer Arithmetic, pp.122-128, 2003.

T. J. Dekker, A floating-point technique for extending the available precision, Numerische Mathematik, vol.5, issue.3, pp.224-242
DOI : 10.1007/BF01397083

P. Tak and P. Tang, Table-driven Implementation of the Logarithm Function in IEEE Floating-Point Arithmetic, ACM Transactions on Mathematical Software, vol.16, issue.4, pp.378-400, 1990.

C. Daramy-loirat, D. Defour, M. Florent-de-dinechin, N. Gallet, C. Q. Gast et al., CR-LIBM A Library of Correctly Rounded Elementary Functions in Double-Precision, 2006.

E. Fleegal, Microsoft Visual C++ Floating-Point Optimization, 2004.

T. Lang and J. D. Bruguera, Representation of unit range numbers, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005., 2005.
DOI : 10.1109/ACSSC.2005.1599943

T. Lang and J. D. Bruguera, Derivation of the relative errors for the sunity representation, Appendix, 2006.

P. Markstein, IA-64 and Elementary functions, 2000.

J. Muller, Elementary Functions. Algorithms and Implementations, Ed. Birkhäuser, 1997.
URL : https://hal.archives-ouvertes.fr/ensl-00989001

B. , R. P. Brent, and H. T. Kung, A Regular Layout for Parallel Adders, Waterloo Maple Inc. Maple 9.01. (2003) References [Swa80]. [KM05] P. Kornerup and J.-M. Muller. RN-Coding of Numbers: Definition and some Properties Proc. IMACS'2005, pp.31260-264236, 1951.

A. Munk-nielsen, D. W. Matula, C. N. Lyu, and G. Even, An IEEE Compliant Floating-Point Adder that Conforms with the Pipelined Packet-Forwarding Paradigm, IEEE Transactions on Computers J. E. Volder. The CORDIC Trigonometric Computing Technique. IRE Transactions on Electronic Computers Computer Arithmetic, vol.49, issue.18, pp.33-47330, 1959.

W. Kahan, A Test for Correctly Rounded SQRT, manuscript at the URL http

N. Koblitz and . Numbers, p-adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics, vol.58, 1984.

V. Lefevre, J. Muller, and A. Tisserand, Towards correctly rounded transcendentals, IEEE Transactions on Computers, issue.11, pp.47-1235, 1998.

P. Markstein, IA-64 and Elementary Functions: Speed and Precision, Hewlett-Packard Professional Books, 2000.

M. Parks, Number-theoretic test generation for directed rounding, IEEE Transactions on Computers, vol.49, issue.7, pp.651-658, 2000.
DOI : 10.1109/12.863034

U. C. The, Berkeley test suite

H. David and . Bailey, A Fortran-90 double-double library Available at URL = http, 2001.

S. Boldo and J. Muller, Some Functions Computable with a Fused-Mac, 17th IEEE Symposium on Computer Arithmetic (ARITH'05), 2005.
DOI : 10.1109/ARITH.2005.39

URL : https://hal.archives-ouvertes.fr/inria-00000895

S. Xiaoye, J. W. Li, D. H. Demmel, G. Bailey, Y. Henry et al., Design, implementation and testing of extended and mixed precision BLAS, ACM Trans. Math. Softw, vol.28, issue.2, pp.152-205, 2002.

P. Markstein, IA-64 and elementary functions. Speed and precision. Hewlett-Packard Professionnal Books, 2000.

T. Ogita, S. M. Rump, and S. Oishi, Accurate Sum and Dot Product, SIAM Journal on Scientific Computing, vol.26, issue.6, pp.1955-1988, 2005.
DOI : 10.1137/030601818

M. Pichat, Correction d'une somme en arithmetique a virgule flottante, Numerische Mathematik, vol.19, issue.5, pp.400-406, 1972.
DOI : 10.1007/BF01404922

]. W. References-[-ka87, . Kahanlm99-]-v, J. Lefèvre, A. Muller, and . Tisserand, Checking Whether Floating Point Division is Correctly Rounded, monograph, Proc. 13 th IEEE Symposium on Computer Arithmetic. IEEE, pp.132-137, 1987.

D. W. Matula, A p-Bit Model of Binary Floating Point Division and Square Root with Emphasis on Extremal Rounding Boundaries, Ph. D. Dissertation, 2002.

D. W. Matula and L. D. Mcfearin, Number Theoretic Foundations of Binary Floating Point Division with Rounding, Proceedings: Fourth Real Numbers and Computers, pp.39-60, 2000.

L. D. Mcfearin and D. W. Matula, Generation and analysis of hard to round cases for binary floating point division, Proceedings 15th IEEE Symposium on Computer Arithmetic. ARITH-15 2001, pp.119-127, 2001.
DOI : 10.1109/ARITH.2001.930111

D. W. Matula and L. D. Mcfearin, A p??p bit fraction model of binary floating point division and extremal rounding cases, Theoretical Computer Science, vol.291, issue.2, pp.159-182, 2003.
DOI : 10.1016/S0304-3975(02)00224-4

D. W. Matula, L. D. Mcfearinsz05, ]. D. Stehlé, and P. Zimmermann, A Formal Method and Efficient Traversal Algorithm for Generating Testbenches for Verification of IEEE Standard Floating Point Division " , DATE 06 Number-Theoretic Test Generation for Directed Rounding Gal's Accurate Tables Method Revisited, Proc. 17 th IEEE Symposium on Computer Arithmetic, pp.1134-1138, 2000.