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Abstract

We study an index calculus algorithm to solve the discrete logarithm problem (DLP)
in degree 0 class groups of non-hyperelliptic curves of genus 3 over finite fields. We present
a heuristic analysis of the algorithm which indicates that the DLP in degree 0 class groups
of non-hyperelliptic curves of genus 3 can be solved in an expected time of Õ(q). This
heuristic result relies on one heuristic assumption which is studied experimentally.

We also present experimental data which show that a variant of the algorithm is faster
than the Rho method even for small group sizes, and we address practical limitations of
the algorithm.
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1 Introduction

Additionally to the discrete logarithm problem (DLP) in elliptic curves and degree 0 class
groups (also named Picard groups or Jacobian groups) of hyperelliptic curves, it has recently
been proposed by various authors to use the DLP in degree 0 class groups of non-hyperelliptic
curves of genus 3 over finite fields as a primitive for public-key cryptographic protocols.
Particular families of such curves proposed for cryptography include Picard curves [10, 17, 4,
26] and more generally C3,4-curves [2, 3]. For these families of curves, effort has been put into
providing efficient construction means and explicit formulae for computations in the degree 0
class group. In spite of these efforts, for a fixed group size, the computational requirements
for the setup of cryptosystems based on such curves (either directly via point counting or
through other construction methods) remains higher than for curves of genus 1 or 2, and the
arithmetic in the degree 0 class group remains slower. Moreover, we are not aware of any
cryptographic protocol exploiting special properties of non-hyperelliptic curves of genus 3,
giving for some purposes a compelling reason to use such curves rather than curves of genus 1
or 2.

We argue in this work that, still in comparison with curves of genus 1 or 2 with a degree 0
class group of comparable group size, both from an asymptotic as well as from a practical
standpoint, the discrete logarithm problem is considerably easier or, equivalently, the group
size has to be considerably increased in order to keep the same level of security. This implies
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that given the current knowledge about the discrete logarithm problem in degree 0 class
groups of curves, the DLP in degree 0 class groups of non-hyperelliptic curves of genus 3 is
not a recommended primitive for public-key cryptographic systems.

In [8], an index calculus algorithm with double large prime variation which is well-suited
for the solution of the DLP in class groups of curves over finite fields represented by plane
models of small degree has been introduced. Using the fact that any non-hyperelliptic genus 3
curve is isomorphic to a plane quartic, a heuristic analysis of the algorithm in [8] gives rise
to:

Asymptotically for q −→∞, the DLP in degree 0 class groups of non-hyperelliptic genus 3
curves over Fq can be solved in an expected time of Õ(q).

Here, the Õ-notation captures logarithmic factors.
The heuristic expected running time of Õ(q) should be compared with the expected run-

ning time of “generic methods” like the Rho method: As asymptotically for q −→∞, degree 0
class groups of genus 3 curves over Fq have ∼ q3 elements, generic methods to solve the DLP
have a (heuristic) expected running time of Θ(q3/2) group operations, provided that the group
order is nearly prime.

In this work, we study the application of variants of the algorithm in [8] to non-hyperelliptic
genus 3 curves in detail. We

• prove a crucial heuristic assumption from the analysis in [8] (Assumption 1 in [8]),

• study the remaining heuristic assumption experimentally,

• present experimental data which show that a practical variant of the algorithm is indeed
faster than the Rho method even for relatively small group orders and address practical
limitations of this variant on current off-the-shelf hardware.

The algorithm is given in Section 3. The heuristic expected running time is derived in
Section 4, with a crucial ingredient of the heuristic analysis being proved in Section 5. In
Section 6 the remaining heuristic assumption is studied experimentally. Finally, in Section 7
a variant of the algorithm which is well suited for practical computations is given and studied
experimentally.

2 Setting and terminology

This work can be read from the point of view of the exposition in Chapters I and II of [22]
as well as from the point of view of scheme theory as in [13]. For Section 5, familiarity with
linear systems, function field theory and Galois theory is required.

We use the following terminology and notations, following the usual terminology in scheme
theory: The projective n-space over a field k is denoted by Pn

k . Given a curve C (which is
always assumed to be projective, smooth and geometrically irreducible) over a perfect field
k, a closed point P of C (denoted P ∈ C) is a Galois orbit of points in C(k). If λ|k is a field
extension, we denote the curve obtained by base-change to λ by Cλ (that is, Cλ is denoted
C/λ in [22]). Moreover, when speaking of a divisor D on C, we implicitly assume that D is
k-rational.

Via the canonical embedding, any non-hyperelliptic genus 3 curve C over Fq is isomorphic
to a non-singular quartic in P2

Fq
, and conversely any non-singular plane quartic is a non-

hyperelliptic genus 3 curve [13, Example IV.5.2.1.]. We fix a homogeneous coordinate system
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X, Y, Z on P2
Fq

and assume that the curve is given by an equation F (X, Y, Z) = 0, where
F (X, Y, Z) is a homogeneous polynomial of degree 4. We assume that the order of the
degree 0 class group is known. In cryptographic applications this is always the case, and by
Pila’s variant of Schoof’s algorithm [21], it can be computed in polynomial time in log q.

We denote the degree 0 divisor class group of C over Fq by Cl0(C). If D is a divisor, we
denote the corresponding divisor class by [D].

Let us fix some P0 ∈ C(Fq); by the Hasse-Weil Bound such a point exists if q ≥ 36.
Following [14], we call an effective divisor D on C maximally reduced along P0 if D − P0 is
not linearly equivalent to an effective divisor. By the Riemann-Roch Theorem, maximally
reduced effective divisors have degree ≤ 3, and the probability that the degree is 3 converges
to 1 as q −→ ∞ (see [14, Proposition 8.2.]). We have a bijection D 7→ [D] − [deg(D)] · [P0]
between the divisors maximally reduced along P0 and the elements of the degree 0 class group.

There are various natural ways to represent divisors and divisor classes on non-hyperelliptic
genus 3 curves. To make things precise, we assume that the input elements for the algorithm
are given by effective divisors maximally reduced along a fixed point P0, and the divisors
themselves are given in free representation, that is, as formal sums of closed points.

It is well known that with this representation the arithmetic in the degree 0 class group
can be carried out in randomized polynomial time in log q (this follows for example from the
algorithms in [14] for the computation of Riemann-Roch spaces in a function field / ideal
theoretic setting). In [2, 3, 10, 11] efficient special purpose algorithms for various classes of
non-hyperelliptic genus 3 curves have been developed. These algorithms are however of no
relevance for our work: For a theoretical analysis the algorithms in [14] suffice, and for a
practical variant of our algorithm we only need about 12 additions in the degree 0 class group
in total.

3 The algorithm

In this section, we first give an overview about basic strategies for index calculus in the
context of non-hyperelliptic genus 3 curves. Then we present one possible algorithm which
lends itself well to a heuristic analysis and gives rise to the heuristic complexity result stated
in the introduction.

Let C be a non-singular plane quartic, given by F (X, Y, Z) = 0. Let a, b ∈ Cl0(C) with
b ∈ 〈a〉. The goal is to compute an x ∈ N with x·a = b. The general approach of index calculus
for curves of small genus is as follows: One fixes a factor base F = {F1, F2, . . .} ⊆ C(Fq).
Then one generates relations between the elements of F and a, b (and possibly one other fixed
divisor). If one has obtained enough relations, one solves the discrete logarithm problem of a
with respect to b with an algorithm from sparse linear algebra.

Let us for simplicity assume that #Cl0(C) is square-free and Cl0(C) is generated by a.
There are two natural ways to generate relations:

1. Let P0 ∈ C(Fq) be a fixed point.

One considers a random linear combination αa + βb of the input elements, which one
represents by a divisor of the form D − deg(D) · P0 with D effective and maximally
reduced along P0. This gives rise to the relation

[Dα,β]− deg(Dα,β) · [P0] = αa + βb . (1)
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2. Let D∞ be the intersection of C with the line Z = 0 (with multiplicities); D∞ is a
divisor on C of degree 4.

One selects a pair of distinct points Fi, Fj ∈ F and considers the line L through Fi and
Fj . Let D be the intersection of L with C (with multiplicities). Then D = Fi +Fj +Di,j

with some effective divisor Di,j of degree 2. By construction, D is linearly equivalent to
D∞, and one has the relation

[Fi] + [Fj ] + [Di,j ]− [D∞] = 0 . (2)

In a basic index calculus one would now require that Dα,β or Di,j split completely into points
of the factor base.

We expand the algorithm with a double large prime variation. This means that we also
use relations which involve up to two elements of L := C(Fq) − F , the set of the so-called
large primes. Analogously to the usual terminology recalled in [12] we define:

Definition 1. A relation of the form (1) or (2) is called a Full, FP or PP relation if Dα,β

or Di,j splits completely into elements of C(Fq) and it contains zero, one or two large primes,
respectively.

In a double large prime variation, one considers FP and PP relations as edges in a graph
of large prime relations on the vertex set L ∪̇ {∗}, where ∗ is a special vertex. An FP relation
involving one large prime P corresponds to an edge ∗–P , while a PP relation involving two
large primes P and Q corresponds to an edge P–Q. As detailed in [12], this graph is used
to obtain recombined relations involving only elements of the factor base and a, b (and again
possibly one other fixed divisor). Again one solves the DLP by sparse linear algebra.

Generating the graph and the recombined relations can be done by using relations of the
form (1) or relations of the form (2) (or both). In this work we argue that the usage of
relations of the form (2), rather than merely the usage of relations of the form (1), leads
to a considerably faster algorithm. The intuitive reason for this is that Di,j has degree 2
whereas with a probability converging to 1 for q −→ ∞, Dα,β has degree 3. The usage
of relations of the form (2) leads however to several stumbling blocks towards a rigorous
analysis. Even though with the algorithm presented in this section we try to overcome this
difficulty, the forthcoming analysis in Section 4 relies on a heuristic assumption, which is
studied experimentally in Section 6.

Recall the following definition.

Definition 2. Let G be an undirected graph, and let ∗ be a vertex in G. Then a shortest path
tree with root ∗ is a tree on a subset of the set of vertices of G with the following properties:

• The vertices in T are the vertices in G connected to ∗.

• Let V be a vertex connected to ∗ in G. The distance from V to ∗ in G is equal to the
distance between V and ∗ in T .

Notation 3. The set of vertices of a tree T is also denoted by T .

A shortest-path tree can be constructed by a breadth-first search, described for instance
in [7]. A trivial extension allows to build a tree of limited depth: only vertices in G within a
fixed distance of the root are considered. This is used in the algorithm below.
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The following algorithm is the algorithm presented in [8] applied to plane quartics with
the differences that the size of the factor base is reduced by a factor of

√
2, only a tree of

size ≤ log2(q) is constructed and the condition in Step 4 is relaxed. As in [8] we assume
for simplicity that the degree 0 class group has prime order. If it is not of prime order but
cyclic or the group structure is known, one should modify Steps 5 and 6 according to the
descriptions in [9] and [12].

The algorithm

Input: A non-hyperelliptic curve C of genus 3 over Fq, given by a homogeneous equation
F (X, Y, Z) = 0 of degree 4, the group order ` := #Cl0(C) (a prime number) and two elements
a, b ∈ Cl0(C) (a 6= 0).

1. Enumerate C(Fq) and choose a factor base F = {F1, F2, . . .} uniformly at random from the
set of all subsets of C(Fq) with

⌈
2
√

q
⌉

elements (if C(Fq) has fewer elements, terminate).
Let L := C(Fq)−F .

2. Construct a graph G on L ∪̇ {∗} as follows:
For all i < j do

Compute the line L through Fi and Fj .
Let D = Fi + Fj + Di,j be the intersection divisor of C with L (with multiplicities).
If Di,j splits into points of C(Fq), if at least one of these points lies in L, and if the
corresponding edge does not yet occur in the graph, insert the edge in the graph.

3. With a breadth-first search, construct a tree T in G with root ∗, limiting the depth to
log2(q).

4. If T has less than q5/6 vertices, go back to 1.

5. Construct a sparse matrix R over Z/`Z as follows:
For i = 1, . . . ,#F + 1 do

Repeat
Choose uniformly and independently randomly αi and βi and compute the unique
effective divisor D maximally reduced along F1 with [D]−deg(D)·[F1] = αia+βib.

Until D splits into elements of F ∪ T .
Use the tree T to substitute these elements by sums of elements of F ∪ {D∞}.
This substitution leads to the relation

∑
j ri,j [Fj ] + ri[D∞] = αia + βib. Store (ri,j)j

as the i-th row of R.

6. Compute a non-zero vector γ over Z/`Z with γR = 0 with an algorithm
from sparse linear algebra.

7. If
∑

i γiβi ∈ (Z/`Z)∗, let x := −
∑

i γiαi∑
i γiβi

, otherwise go back to 5.

Output x.

Proposition 4. If the algorithm outputs x, we have x · a = b.

Proof. Easy; see also [8]. �
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4 Heuristic analysis

The enumeration in Step 1 of the algorithm can be performed in an expected time of Õ(q) by
iterating over the (X, Z)-coordinates and considering the possible Y -coordinates. After this,
a factor base as in Step 1 can also be found in an expected time of Õ(q).

Given i, j, the computation of Di,j is an easy algorithmic task. One first computes the line
L : aX + bY + cZ = 0 through Fi and Fj . Using the equation for L, it is sufficient to compute
either the (X, Z) or (Y, Z) coordinates of Di,j . Without loss of generality, assume for example
that b = 1, such that the (X, Z) coordinates of D are the roots of F (X,−aX − cZ, Z), which
has degree 4. Since two known roots are the (X, Z) coordinates of Fi and Fj , the remaining
(X, Z) coordinates are obtained by solving a quadratic equation. This implies that given i, j,
the divisor Di,j can be computed in randomized polynomial time in log q, hence Step 2 can
be performed in an expected time of Õ(q).

The limited breadth-first search in Step 3 has a complexity bounded by the complexity
of the complete breadth-first search, which is Õ(q) (the graph has O(q) vertices, and O(q)
edges). Hence Step 3, as previous steps, can be performed in an expected time of Õ(q).

Let us postpone for later investigation the probability of passing the test in Step 4.

For estimating the complexity of Steps 5–7, we first prove two lemmata yielding the
probability that D splits over F ∪ T .

Lemma 5. Let C be a non-hyperelliptic curve of genus 3 over Fq, let P0 ∈ C(Fq), and let
S ⊂ C(Fq) such that #S ∈ Ω(q5/6). Then there are Ω(q5/2) effective divisors D which split
completely into sums of elements of S and are maximally reduced along P0.

Proof. The assumption on S implies that there are
(
#S+2

3

)
∈ Ω(q5/2) effective divisors of

degree 3 on C which are completely split into sums of elements of S. We wish to estimate the
number of such divisors which are maximally reduced along P0.

For any effective divisor D on C, let Dred be the unique divisor maximally reduced along
P0 such that Dred +(deg(D)−deg(Dred)) ·P0 is linearly equivalent to D. The map D 7→ Dred

is injective for non-special divisors D of degree 3. The following lemma shows that the number
of special divisors of degree 3 on C is in o(q5/2), which proves the claim. �

Lemma 6. The number of special linear systems of degree 3 on a curve of genus 3 over Fq

is ∼ q, and the number of special divisors is ∼ q2.

Proof. Let K be a canonical divisor on C (e.g. K = D∞ if the curve non-hyperelliptic and
given by a plane quartic).

By the Riemann-Roch Theorem [13, Theorem IV.1.3], P 7→ |K − P | defines a bijection
between C(Fq) and the special linear systems of degree 3 on C. This proves the first assertion.

By the same argument, all special linear systems of degree 3 on C have (projective) di-
mension 1. Together with the first assertion, this implies the second assertion. �

Proposition 7. Let C be a non-hyperelliptic genus 3 curve over Fq, F a factor base of size
O(q1/2), and T a tree with root ∗ on a subset of L ∪̇ {∗} (with L := C(Fq)− F) such that T
has Ω(q5/6) vertices and a depth of O(log(q)O(1)). Let us assume that the order of Cl0(C) is
prime. Let a, b ∈ Cl0(C) with a 6= 0. Then following Steps 5–7 of the algorithm, one can solve
the DLP with respect to a and b in an expected time of Õ(q).
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Proof. In Step 5 α, β ∈ Z/`Z is drawn uniformly and independently at random, and therefore
so is αa + βb ∈ Cl0(C).

By Lemma 5, such a combination has then a probability of Ω(q−1/2) to split completely
into elements of F ∪ T . Furthermore, since the depth of T is in O(log(q)O(1)), we conclude
that Step 5 has a complexity of Õ(q1/2 ·#F) = Õ(q).

The bound on the depth of T also implies that rows of the relation matrix have no more
than O(log(q)O(1)) elements. Step 6 can thus also be performed in an expected time of Õ(q).

Finally, as argued in [9], if γ is the vector obtained in Step 6,
∑

i γiβi is uniformly randomly
distributed over the group Z/`Z. Step 7 therefore succeeds with probability 1− 1

` . �

Remark. This proposition also holds if Cl0(C) is cyclic or its structure is known provided that
the algorithm is modified according to the descriptions in [9] and [12].

Estimating the size of the tree T

It remains to prove that Step 4 of the algorithm is passed with sufficiently high probability.
In order to derive the desired result that the expected running time of the algorithm is in
Õ(q), we would need to prove that with a probability of Ω( 1

log(q)O(1) ), the set of vertices of the

graph of large prime relations which have distance ≤ (log(q))2 to ∗ contains ≥ q5/6 elements.
We do not know how to prove this result, and therefore our analysis relies on a heuristic

comparison with appropriate random graphs in standard models. Recall that random graphs
are mostly studied for two models in the literature. The first one is the Bernoulli (or binomial)
random graph G(n, p). A set of n vertices is fixed, and each unordered pair of distinct vertices
appears (independently of the other pairs) with a probability p as an edge of the graph. The
second one is the uniform random graph G(n, m). Again, a set of n vertices is fixed, and the
set of edges is drawn uniformly from the set of subsets of unordered pairs of distinct vertices
with m elements. Here and in the following, we use the notations of [15].

In the following paragraphs, we examine the properties which the graph of large prime
relations would enjoy if it were a random graph either in the Bernoulli or uniform model. Let
E be the expected number of edges in the graph of large prime relations at the end of Step 2.
As a first approach, we compare our graph with a Bernoulli random graph G(#(L ∪̇ {∗}), p),
where p := E

(#(L∪̇{∗})
2 )

. Note that just as our graph, this random graph has an expected number

of E edges.
As usual we call a set S with a fixed point ∗ ∈ S a pointed set. We call a graph on a

pointed vertex set (V, ∗) a pointed graph; if G is a graph on V , we denote the corresponding
pointed graph by (G, ∗). These definitions extend naturally to random graphs (where we still
view ∗ as being fixed). The following proposition follows from results in [15] and [6]:

Proposition 8. For two positive constants c1 and c2, consider the following properties of
graphs G and pointed graphs (G, ∗) on a set of n vertices:

• (Qc1,c2) There exists a connected subgraph of G of size ≥ c1n and diameter c2 log(n).

• (Q∗
c1,c2) There exists a connected subgraph of G of size ≥ c1n, diameter c2 log(n), con-

taining ∗.

Let c > 1 be a constant. Then there exist positive constants c1, c2 such that for p ≥ c
n the

Bernoulli random graph G(n, p) satisfies property Qc1,c2 with a probability converging to 1 for
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n −→ ∞ and the pointed Bernoulli random graph (G(n, p), ∗) satisfies property Q∗
c1,c2 with a

probability of Ω(1) for n −→∞.

Proof. By [15, Theorem 5.4], there exists a positive constant c1 such that with a probability
converging to 1 for n −→∞, the graph has a “giant connected component” of size ≥ c1n. By
the results of [6], there exists a positive constant c2 such that with a probability converging
to 1 for n −→∞, the graph has diameter ≤ c2 log(n). This proves the statement on Bernoulli
random graphs.

For the second statement, let us first assume that ∗ is chosen uniformly and independently
of the other choices (rather than fixed beforehand). Then the statement follows because the
probability that property Q∗

c1,c2 is satisfied is ≥ 1
c1

times the probability that property Qc1,c2

is satisfied. The statement on pointed Bernoulli random graphs follows because the property
Qc1,c2 is invariant under graph automorphism. �

In Section 5, we will prove the following proposition.

Proposition 9. The expected number E of edges in the graph of large prime relations is ∼ q.
The expected number of edges around vertex ∗ is ∼ 4

3q1/2.

This proposition implies that the probability p is ∼ q
q2/2

= 2
q . As #(L ∪̇ {∗}) ∼ q, it is

reasonable to assume that the conclusion of Proposition 8 is also satisfied for the graph of
large prime relations at the end of Step 2.

We note however that there are of course essential differences between our graph and a
Bernoulli random graph G(#(L ∪̇ {∗}), p). In particular:

• The set of vertices L ∪̇ {∗} = (C(Fq) ∪̇ {∗})− F of the random graph is not fixed (but
its cardinality is).

• Regarded as a graph on C(Fq) ∪̇ {∗}, many pairs of vertices are never drawn, and the
probability that a particular edge is drawn is not independent of other edges being
drawn.

• The expected value of the number of edges around the special vertex ∗ is much larger
than for the corresponding Bernoulli random graph.

Note that the third point suggests that with a very large probability ∗ is contained in the
largest connected component of the graph. Together with Proposition 8 one might conjecture
that there are c1 and c2 such that our graph has property Q∗

c1,c2 with a probability converging
to 1 for q −→∞. We do however not need this condition for our heuristic analysis.

So far we have considered the expected number of edges and compared the graph of large
prime relations with a Bernoulli random graph. To give further heuristic evidence that Step 4
is passed with sufficiently high probability, we now would like to compare our graph with a
uniform random graph. Analogously to Bernoulli random graphs we have the following result.

Proposition 10. Let c > 1 be a constant. Then the conclusions of Proposition 8 also hold for
the uniform random graph G(n, m) (and the corresponding pointed uniform random graph)
with m ≥ cn

2 .

Proof. Again because of monotony, we only have to prove the statement for m(n) = d cn
2 e. Let

c1 and c2 be as in the proof of Proposition 8. Then the statement on Qc1,c2 carries over from
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the Bernoulli to the uniform model because Qc1,c2 is a convex property, hence [15, Proposition
1.15] applies. Again the statement on Q∗

c1,c2 follows easily. �

In contrast to Proposition 10, for any c < 1, there exists a positive constant c1 such
that with a probability converging to 1 for n −→ ∞, all components of the uniform random
graph G(n, m) with m ≤ cn

2 contain less than c1 log(n) vertices. This follows again from [15,
Theorem 5.4] together with [15, Proposition 1.15].

This dichotomy of uniform random graphs (or the analogous property of Bernoulli random
graphs) is called “phase transformation”. The following proposition guarantees that with a
probability of Ω(1), the random graphs constructed in the algorithm have a number of edges
which is “above the phase transformation”, and thus the conclusions of Propositions 8 and 10
apply to the uniform random graph with the same number of vertices and edges. This gives
further heuristic evidence that the conclusions of these propositions also apply to the graph
of large prime relations at the end of Step 2.

Proposition 11. If the factor base F is chosen uniformly at random from the set of all
subsets of C(Fq) with d2q1/2e elements, with a probability of Ω(1) we have more than 2

3q edges
in the graph of large prime relations.

Proof. Let c be the number of lines drawn through two factor base elements which give rise
to PP relations with 4 distinct points. Then c ≤ 2(

√
q + 1)2. By letting the factor base vary,

the quantity c
2(
√

q+1)2
becomes a random variable with values in [0, 1]. Let us call this random

variable X. Then the probability in question is ≥ P := P(X > 1
3). We have

E(X) ≤ P(X ≤ 1
3
) · 1

3
+ P(X >

1
3
) · 1 = (1− P )

1
3

+ P,

hence: P ≥ E(X)− 1/3
2/3

.

By Proposition 20 we have E(X) ∼ 1
2 for q −→ ∞, thus lim inf P(X > 1

3) ≥ 1/6
2/3 = 1

4 ,
where the limes inferior is taken over all curves. �

The above comparisons of the graph of large prime relations with Bernoulli and uniform
random graphs motivate that the conclusions of Propositions 8 and 10 are valid for the graph
of large prime relations at the end of Step 2. The derivation of the complexity result relies
on the following weaker assumption.

Heuristic Assumption 12. With a probability of Ω( 1
log(q)O(1) ), the set of vertices of the

graph of large prime relations which have distance ≤ (log(q))2 to ∗ contains ≥ q5/6 elements.

As stated above, this assumption implies that the test in Step 4 succeeds with probability
converging to 1 as q →∞. Putting this together with Proposition 7 and the initial arguments
of this section, we finally have:

Heuristic Result 13. One can solve the DLP in degree 0 class groups of non-hyperelliptic
genus 3 curves in an expected time of Õ(q), provided that the class group is cyclic or the group
structure is known.

The result holds rigorously for any class of non-hyperelliptic curves of genus 3 for which
Heuristic Assumption 12 is satisfied and the class group is cyclic or the group structure is
known.
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Again on a heuristic basis one should expect this result to hold even if one calculates
discrete logarithms in proper subgroups of the degree 0 class groups. One then obtains the
heuristic result stated in the introduction: One can calculate the DLP in degree 0 class groups
of non-hyperelliptic genus 3 curves in an expected time of Õ(q).

5 On the number of edges in the graph of large prime relations

As above, let C be a non-hyperelliptic genus 3 curve over Fq, given as a plane quartic.
The purpose of this section is to prove Proposition 9 in the previous section. For this, we

first derive the following result.

Proposition 14. The number of lines in P2
Fq

intersecting the curve in 4 distinct Fq-rational
points is in

1
24

q2 + O(q3/2) .

Remark. A reformulation of this proposition is:
If we choose a tuple of distinct points of C(Fq) uniformly at random, the probability that

the line running trough P and Q intersects C in 4 distinct Fq-rational points is in

1
2

+ O(q−1/2) .

This follows from the Hasse-Weil Bound and the fact that for every line L intersecting the
curve in 4 distinct Fq-rational points, there are 12 ordered tuples of distinct points of C(Fq)
defining L.

The proof is based on an effective Chebotarev density theorem in the “geometric” of
“function field theoretic” setting.

As above, let D∞ be the intersection of C with Z = 0. Let us now fix a point P ∈ C(Fq).
We wish to estimate the number of lines over Fq intersecting the curve C in 4 distinct Fq-
rational points one of whose is P . The lines over Fq intersecting C in P are in bijection with
the divisors in the complete linear system |D∞ − P | (over Fq). We thus wish to estimate the
number of completely split divisors in this linear system.

The complete linear system |D∞ − P | has degree 3 and (projective) dimension 1. It thus
gives rise to a covering C −→ P1

Fq
of degree 3 (unique up to an automorphism of P1

Fq
). We

recall that the divisors in |D∞ − P | are (by definition of the covering C −→ P1
Fq

) exactly the
preimages of the points in P1(Fq). We have the following proposition.

Proposition 15.

• If the covering C −→ P1
Fq

associated to |D∞ − P | has an automorphism of order 3, the
number of completely split divisors in |D∞ − P | is in

1
3
q + O(q1/2) .

• If the covering C −→ P1
Fq

does not have an automorphism of order 3 but the covering
CFq

−→ P1
Fq

over Fq has such an automorphism, there are no completely split divisors
in |D∞ − P |.
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• If the covering CFq
−→ P1

Fq
over Fq does not have an automorphism of order 3, then the

number of completely split divisors in |D∞ − P | is in

1
6
q + O(q1/2) .

For the proof of this proposition, we have to guarantee that the covering CFq
−→ P1

Fq
is

separable (that is, that the corresponding extension of function fields is separable). Since the
degree of the covering is prime, this follows from the following general proposition.

Proposition 16. Let C −→ P1
Fq

be any purely inseparable covering of curves (that is, the
corresponding extension of function fields is purely inseparable). Then C is isomorphic to
P1

Fq
.

Proof. Let p be the characteristic. By induction we only have to consider the case that the
covering degree is p.

Every valuation v of Fq(P1) has a unique extension w to Fq(C) (given by w(a) = 1
pv(ap)).

A reformulation of this is that every closed point of P1
Fq

has a unique preimage. Moreover,
the covering is (by definition) finite. This implies that the “fundamental equation” holds (see
the proof of [20, Satz 8.2]). Taken together these statements imply that every closed point of
CFq

is completely ramified in the covering CFq
−→ P1

Fq
, and all ramification indices are p.

Now let P,Q be closed points of CFq
. Then by what we have just seen p · P and p ·Q are

in the same linear system. This implies that the degree 0 class group of CFq
is annihilated by

p, which in turn implies that C has genus 0. As the ground field is finite this implies that C
is isomorphic to P1

Fq
(cf. [23, Proposition I.6.3, Corollary V.1.11]). �

Proof of Proposition 15. The completely split divisors in |D∞ − P | are in bijection with the
elements in P1(Fq) which are completely split in C.

We consider the three cases in the statement separately.

Let us first assume that the covering C −→ P1
Fq

has an automorphism of order 3. Then it
is a Galois covering in the sense that the associated extension of function fields is Galois. By
the effective Chebotarev theorem in [19] the number of elements in P1

Fq
which are completely

split is in 1
3q + O(q1/2).

Now let us assume that we are in either the second or the third case. Let M be the Galois
closure of the extension of function fields Fq(C)|Fq(P1). Then M |Fq(P1) is a Galois extension
with Galois group S3. Moreover, let L be the unique quadratic extension of Fq(P1) in M . In
the second case, we have L = Fq2(P1), and in the third case, Fq is the exact constant field of
L and of M .

In the following, we use the same notation for closed points of the curves and the corre-
sponding places of the function fields. For a place P of Fq(P1) which is unramified in L (and
thus in M), we have the following possibilities:

• P splits completely in M and thus also in Fq(C) and L.

• P splits as Q1 + Q2 in M , where the Qi have degree 3, is inert in Fq(C), and splits
completely in L.
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• P splits as Q1 + Q2 + Q3 in M , where the Qi have degree 2, splits as Q′
1 + Q′

2 in Fq(C)
where deg(Q′

1) = 1 and deg(Q′
2) = 2, and is inert in L.

We see that in particular, P splits completely in Fq(C) if and only if it splits completely in
M .

Now, if L = Fq2(P1) (second case), every place P is inert in L, thus it cannot split
completely in Fq(C). If Fq is the exact constant field of L (third case), again by the effective
Chebotarev theorem in [19], the number of elements in P1

Fq
which are completely split in M is

in 1
6q +O(q1/2) (the other two numbers are in 1

3q +O(q1/2) and 1
2q +O(q1/2) respectively). �

Note that as the automorphism group of CFq
is bounded by 84 · (g(C) − 1) = 168, there

are at most 83 subgroups of the automorphism group of order 3. This implies that there are,
up to automorphisms of Aut(CFq

), at most 83 distinct coverings CFq
−→ P1

Fq
of order 3 with

an automorphism of order 3 (in fact, up to automorphisms of Aut(CFq
), there are at most

4 distinct coverings CFq
−→ P1

Fq
[18]). In terms of linear systems this means that there are

at most 83 linear system of degree 3 and dimension 1 on CFq
which define a covering to P1

Fq

which has a non-trivial automorphism. This means that there are at most 83 ∈ O(1) points
P ∈ C(Fq) for which in Proposition 15 we are in the first or second case.

We are interested in the number of divisors in |D∞| which split completely into 4 distinct
Fq-rational points. Every divisor which contains a double point is defined by a line which is
tangential to the curve. This implies that there are at most #C(Fq) ∼ q such divisors.

Keeping in mind that every divisor of the canonical system |D∞| which splits into 4 distinct
Fq-rational points occurs in exactly 4 systems of the form |D∞ − P |, we obtain:

Proposition 17. The number of divisors in |D∞| which split into 4 distinct Fq-rational points
is in

1
24

q2 + O(q3/2) .

Proposition 14 is a reformulation of this proposition. We now show how one can use
Proposition 14 to derive Proposition 9.

Definition 18. For some line L in P2
Fq

for which the intersection with the curve C consists
of Fq-rational points, let

aL, bL, cL

be the probabilities (over the possible factor base choices) that L gives rise to a Full, FP or
PP relation respectively.

The following proposition contains slightly more information than we need for the proof
of Proposition 9.

Proposition 19. For all lines L for which the intersection with C consists of 4 distinct
Fq-rational points, we have:

aL ∼
16
q2

, bL ∼
32

q3/2
, cL ∼

24
q

.

Moreover, for all lines L for which the intersection with C consists of 3 distinct Fq-rational
points (one of which is a double point), we have

aL ∼
8

q3/2
, bL ∼

12
q

, cL = 0 .
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Proof. Let L be a line intersecting C in s distinct Fq-rational points. The probability that a
factor base F is chosen such that # (L ∩ F) = r is

1(#C(Fq)

d2q1/2e
)(s

r

)(
#C(Fq)− s

d2q1/2e − r

)
∈
(

s

r

)(
2q1/2 + O(1)
q + O(

√
q)

)r

⊆
(

s

r

)(
2q1/2

q

(
1 + O(q−1/2)

))r

⊆
(

s

r

)(
2q−1/2

)r
·
(
1 + O(q−1/2)

)
.

For the line L to be considered by the relation collection step, we must have r ≥ 2. Therefore,
when s − r is 0, 1 or 2 respectively, the estimate above gives the probabilities aL, bL, cL,
except that cL is 0 if s = 3. The resulting equivalents follow. �

Proposition 9 is now a consequence of the following proposition.

Proposition 20. If we choose the factor base F uniformly at random from the set of all
subsets of C(Fq) with d2q1/2e elements, the expected values B,C of FP, PP relations satisfy
asymptotically for q −→∞:

B ∈ 4
3
q1/2(1 + O(q−1/2)) , C ∈ q(1 + O(q−1/2)) .

Proof. We have
B =

∑
L

bL , C =
∑
L

cL ,

where the sums run over all lines in P2
Fq

which intersect the curve in Fq-rational points.
Combining Proposition 14, the proof of Proposition 19, and the fact that the number of lines
whose intersection with the curve contain a double point is in O(q), the claims follow. �

6 Experimental study of the heuristic assumption

The analysis in Section 4 relies on Heuristic Assumption 12. In order to test this assumption,
for each of the base fields F219 to F224 , we built 160 graphs of large prime relations, built
from 10 (pseudo-)randomly chosen factor bases over 16 random curves of genus 3 given by
arbitrary plane quartics. We thereby discarded FP relations, that is, we only considered PP
relations. The reason for this is that the number of FP relations is asymptotically negligible,
but FP relations might lead to distortions which hide phenomena occurring for q −→∞.

We made a comparison with the same number of instances of Bernoulli random graphs
G(q, p), where p = 2

q . As discussed after Proposition 9, such graphs have an expected number
of edges ∼ q. The graph instances are constructed by first choosing the number of edges
according to the corresponding binomial distribution (approximated by a normal distribution),
and then picking an instance of a uniform random graph.

Note that a comparison following more closely the statement of Heuristic Assumption 12
would be to construct, for each curve, instances of the Bernoulli random graph G(L ∪̇ {∗}, p),
where p is such that the expected number of edges is exactly the same as the number C
defined in Proposition 20. However, for computing exactly C we would have to determine the
exact number of lines in P2

Fq
which lead to completely split divisors; we are not aware of any

sufficiently fast method for this task.
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q tree depth(x, q5/6) cc depth(x) giant c.c. (in million) #edges/q

219
real 14 . . .16.8 . . . 26 29 . . .34.7 . . . 47 0.41 . . .0.42 . . . 0.42 0.99 . . .0.99 . . . 1.00
random 14 . . .16.8 . . . 26 30 . . .34.5 . . . 42 0.41 . . .0.42 . . . 0.42 0.99 . . .0.99 . . . 1.00

220
real 15 . . .17.6 . . . 28 32 . . .36.4 . . . 49 0.83 . . .0.83 . . . 0.84 0.99 . . .1.00 . . . 1.00
random 15 . . .17.6 . . . 28 32 . . .36.5 . . . 48 0.83 . . .0.83 . . . 0.83 0.99 . . .1.00 . . . 1.00

221
real 15 . . .18.4 . . . 30 33 . . .38.2 . . . 48 1.67 . . .1.67 . . . 1.67 1.00 . . .1.00 . . . 1.00
random 16 . . .18.4 . . . 29 33 . . .38.1 . . . 48 1.66 . . .1.67 . . . 1.67 1.00 . . .1.00 . . . 1.00

222
real 16 . . .19.2 . . . 28 35 . . .39.8 . . . 51 3.33 . . .3.34 . . . 3.34 1.00 . . .1.00 . . . 1.00
random 16 . . .19.1 . . . 28 35 . . .39.7 . . . 50 3.33 . . .3.34 . . . 3.34 1.00 . . .1.00 . . . 1.00

223
real 17 . . .20.0 . . . 29 37 . . .41.7 . . . 53 6.67 . . .6.68 . . . 6.68 1.00 . . .1.00 . . . 1.00
random 17 . . .20.0 . . . 34 36 . . .41.6 . . . 55 6.67 . . .6.67 . . . 6.68 1.00 . . .1.00 . . . 1.00

224
real 18 . . .20.8 . . . 31 39 . . .43.3 . . . 53 13.35 . . .13.36 . . . 13.37 1.00 . . .1.00 . . . 1.00
random 18 . . .20.8 . . . 29 38 . . .43.3 . . . 52 13.35 . . .13.36 . . . 13.36 1.00 . . .1.00 . . . 1.00

Table 1: Comparison of the graph of large prime relations with a Bernoulli random graph

Our comparison criteria are both derived from the properties stated in Proposition 8, as
well as the usage of the graph of large prime relations in the algorithm.

Given a graph G and a vertex x, we define:

Nk(x) = {y ∈ G, dG(x, y) ≤ k} ,

tree depth(x, S) = min {k #Nk(x) ≥ S} ,

cc depth(x) = max {k Nk(x) ) Nk−1(x)} .

It is easily seen that when x belongs to a connected component Γ, we have

cc depth(x) ≤ diameter(Γ) ≤ 2cc depth(x).

Based on this, we use cc depth as a rough (indirect) measure of the diameter of the giant
connected component.

Furthermore, we also measure tree depth(x, q5/6), as the accordance of this quantity be-
tween the graph of large prime relations and the random graph case ensures the success of
Step 4 of the algorithm of Section 3.

Table 1 gathers these measurements. For each set of graphs, as well as for the correspond-
ing instances of Bernoulli random graphs, we give the extremal values as well as the observed
mean for tree depth(x, q5/6) and cc depth(x) for vertices x picked at random within the giant
connected component. The size of the giant connected component is also given, in millions
of vertices. Finally, we give the average number of edges present in the graphs, as a ratio
compared to the expected value q. Table 1 shows no noticeable deviation between the graph
of large prime relations and the corresponding random graph.

7 Practical aspects and computations

For practical implementation of the algorithm, the following modifications were made.

• The factor base is not chosen at random. Instead, we pick all the Fq-rational points
whose abscissa has an integer representation within the interval [0, B], where B is

⌈
2
√

q
⌉

or a nearby bound (experiments were made with B =
⌈

4
3

√
2q
⌉
, which was sufficient).
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Stage Wall-clock time Time spent on I/O
Relation collection (1 CPU) 8h ≈ 50%
Relation filtering (1 CPU) 1day ≥ 95%
Linear algebra (4×2 CPUs) 1day ≤ 5%

Table 2: Running times for different stages of the computation
(one C3,4 Koblitz curve over F231)

• The relations used for the matrix construction in Step 5 of the algorithm are the same
as relations used for building the graph (following the non-simplified algorithm in [12]).

• As problem size grows, it becomes cumbersome to deal with the whole graph, for mem-
ory reasons. Since the previous modification implies that we are interested in cycles
occurring in this graph (as described in [12]), we first perform a “filtering” pass: All
PP relations are gathered, and used to identify a smaller set of relations containing a
smaller subgraph with sufficiently cycles. This “filtering” step is done in the spirit of
e.g. [5].

We have been able to carry out discrete logarithm computations in the degree 0 class
group of the Koblitz C3,4 curve defined by Y 4 + Y 3 + Y 2 + X2Y + X3 + X + 1 = 0 over the
field F231 . Choosing a Koblitz curve avoids the problem of computing the group order, which
is readily obtained. The group order has 93 bits, and it has a 90-bit prime factor.

The implementation has been carried out in C/C++ and run on 2.4GHz Opteron processors.
A pair of distinct points Fi, Fj ∈ F is processed in 3.4 microseconds, yielding the satisfying
pace of 6.7 microseconds per PP relation. This is the only step of the algorithm which is
sensible to the choice of the curve, and if the C3,4 curve is replaced by a random non-singular
plane quartic, a PP relation is produced in 8.1 microseconds on average. In comparison, a
step of the algorithm in [12] applied to hyperelliptic curves of genus 3 is performed in 5.0
microseconds on the same hardware, but succeeds in producing a PP relation only with a
probability of roughly 2#F

q .
Most processes dealing with the relations produced and the graph of large prime relations

are dominated by the input/output costs, as indicated by Table 2. Indeed, the graph consid-
ered has roughly 2 ·109 edges, and about as many vertices. This motivates the prime need for
reduction of the graph to a smaller subgraph containing sufficiently many cycles. We isolated
roughly 380 million relations, yielding about 200 000 recombined relations. This was more
than enough, and made it possible to select only the lightest relations.

We eventually produced a 87 803× 87 803 matrix with an average of 352 non-zero coeffi-
cients per row. The linear system has been solved using the block Wiedemann algorithm in
just below a day, using 4 dual-CPU machines. The solutions were checked using Magma.

In comparison with this index calculus experiment, we extrapolate on the feasibility of
such an attack using Pollard’s Rho method, or the parallel collision search algorithm from [25].
For such an attack, fast arithmetic in the degree 0 class group is required. Let us count only
field multiplications: algorithms from [11, 2] require between 130 and 170 multiplications per
operation in the degree 0 class group.1 Approximately

√
π#G/2 operations in the degree 0

class group G would be required to compute one discrete logarithm, hence at least 1.6 · 1016

1These figures are valid for odd characteristic. We assume that the cost for characteristic 2 would be similar.
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field multiplications. In comparison, our implementation requires on average 86 field multi-
plications to obtain one PP relation (and no exceptional effort has been put into trimming
down this number), therefore the total cost of the relation collision step is 1.7 · 1011 field mul-
tiplications. This implies that the parallel collision search method can be expected to require
about 105 times as much CPU time as the relation collection step in our implementation,
hence an estimated cost of about 370 000 hours on one CPU.

It should be noted that Pollard’s Rho method is also surpassed by the presented algo-
rithm even for tiny experiments. Over the field F217 , all the steps of the discrete logarithm
computation by the index calculus approach can be performed in approximately 5 seconds,
while Pollard’s Rho method would require approximately 10 minutes.

We wish to extrapolate from our index calculus computation to the feasibility of compu-
tations in larger groups. The limiting factor is thereby that we allow resources (in hardware
and time) comparable to the latest factorization record: the factorization of RSA-200 with
the General Number Field Sieve [1]. Note that for this record, both for the relation collection
and the linear algebra, only off-the-shelf hardware was used. (According to [1], the relation
collection could have been performed on a single 2.2 GHz AMD Opteron CPU in 55 years.
The linear algebra took place on a cluster of 40 dual-CPU 2.2 GHz AMD Opteron computers
connected with gigabit ethernet and took three months.)

The relation collection step scales with no difficulty. For a field size of q = 237 (hence
a group size near 2111), it could be completed in just above three weeks on one machine,
including input/output overhead. However the overhead induced by relation filtering and the
expectable overhead of linear algebra are not so easily overcome. The amount of PP relations
to be considered (1.3 · 1011) and the size of the linear system to be solved (740 000 unknowns)
are comparable in magnitude to recent works. The above mentioned factorization records
handled 3 ·109 partial relations, and for the records for finite field discrete logarithms [16, 24],
linear systems of this size have already been solved.

These records indicate that taking into account the overhead for managing the data size,
the presented algorithm can probably be employed until approximately a group size of 2111,
using hardware and time comparable to the resources used in the factorization of RSA-200.
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