Unsupervised Connectionist Clustering Algorithms for a better Supervised Prediction : Application to a radio communication problem

Laurent Bougrain 1 Frédéric Alexandre 1
1 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Most models concerned with real-world applications can be improved in structuring data and incorporating knowledge about the domain. In our problem of radio electrical wave dying down prediction for mobile communication, a geographic database can be divided in contextual subsets, each representing an homogeneous domain where a predictive model performs better. More precisely, by clustering the input space, a predictive model (here a multilayer perceptron) can be trained on each subspace. Various unsupervised algorithms for clustering were evaluated (Kohonen's maps. Desieno's algorithm, Neural gas, Growing Neural Gas, Buhmann's algorithm) to obtain class homogeneous enough to decrease the predictive error of the radio electrical wave prediction
Type de document :
Communication dans un congrès
International Joint Conference on Neural Networks, 1999, Washington, USA, 6 p, 1999
Liste complète des métadonnées

https://hal.inria.fr/inria-00107693
Contributeur : Publications Loria <>
Soumis le : jeudi 19 octobre 2006 - 09:05:27
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48
Document(s) archivé(s) le : mercredi 29 mars 2017 - 12:54:53

Fichier

Identifiants

  • HAL Id : inria-00107693, version 1

Collections

Citation

Laurent Bougrain, Frédéric Alexandre. Unsupervised Connectionist Clustering Algorithms for a better Supervised Prediction : Application to a radio communication problem. International Joint Conference on Neural Networks, 1999, Washington, USA, 6 p, 1999. 〈inria-00107693〉

Partager

Métriques

Consultations de la notice

187

Téléchargements de fichiers

116