
HAL Id: inria-00107711
https://inria.hal.science/inria-00107711

Submitted on 19 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matrix-DBP for (m, k)-firm Real Time Guarantee
Enrico Poggi, Ye-Qiong Song, Anis Koubaa, Zhi Wang

To cite this version:
Enrico Poggi, Ye-Qiong Song, Anis Koubaa, Zhi Wang. Matrix-DBP for (m, k)-firm Real Time
Guarantee. RTS 2003 - Real Time Systems Conference, 2003, Paris, France. pp.27. �inria-00107711�

https://inria.hal.science/inria-00107711
https://hal.archives-ouvertes.fr

Matrix-DBP For (m, k)-firm Real-Time Guarantee

Enrico POGGI*, Yeqiong SONG*, Anis KOUBAA*, Zhi WANG**

* LORIA - UHP Nancy 1 - INRIA Lorraine

2, av. de la Forêt de Haye

54516 Vandoeuvre – France
Email : song@loria.fr; akoubaa@loria.fr

** National Laboratory of Industrial Control
Technology, Zhejiang University,

Hangzhou, 310027, China

Email: wangzhi@iipc.zju.edu.cn

mailto:song@loria.fr
mailto:akoubaa@loria.fr
mailto:wangzhi@iipc.zju.edu.cn

Abstract1
(m, k)-firm means at least m deadlines should be met among any k consecutive task
invocations or message transmissions. Providing (m, k)-firm guarantee is becoming attractive
as it proposes an alternative between hard real-time guarantee (case of m = k) and soft (or
probabilistic) real-time guarantee with p = m/k (when m, k → ∞) and allows more effective
utilization of server resources (processor for task processing or bandwidth for message
transmission). A dynamic priority assignment scheme called DBP (Distance Based Priority)
has been proposed to handle the (m, k)-firm constraint. This paper shows that DBP combined
with EDF (EDF for making choice among tasks/messages of the same priority assigned by
DBP) cannot always provide good performance in a MIQSS (Multiple input queues single
server) non-preemptive model. The reason is that DBP assignment is only based on the
distance to failure state of each individual stream under its own (m, k)-firm constraint. It does
not take into account neither the stream timing parameters (period, deadline, service time in
server) nor its relationship with other streams sharing the same server. Taking into account
these additional parameters, two necessary schedulability conditions are derived and an
enhancement of DBP called matrix-DBP is proposed. The performance improvement has
been shown by simulations.

Keywords
Real-time, (m, k)-firm, Non-preemptive scheduling, Dynamic priority assignment,
Performance evaluation

1 This work has been partially supported by Franco-Chinese advanced research program under grant

n°PRA SI01-04

1. Introduction

Traditional classification of real-time systems stands for two classes
to characterize the real-time requirements of such systems: Hard Real-
Time (HRT) systems and Soft Real-Time (SRT) systems.

For SRT applications, it is permitted to miss some deadlines
occasionally. The term occasionally is not precise, but for SRT
systems we often specify a probability to meet the deadline
requirements. In general, the analysis of such systems is made using
stochastic approaches and queuing theory [Koubâa02][Song02].

For applications with HRT requirements, no deadline miss is
tolerated. It means that each task of a HRT application must meet its
deadline; otherwise it comes to a failure. The analysis of such systems
is performed with worst-case analysis to estimate an upper bound for
application response time using either service curve approaches
[Cruz91] or classical worst-case response time analysis [Lehoczky90].

These two classes might be insufficient to appropriately describe a
real-time system. In fact, for SRT systems, stochastic analysis gives
only mean response time or better the probability of deadline misses
and cannot guarantee that these deadlines are missed in right manner
to hold the good behavior of real-time system. An example is the
MPEG video packets transmission in terms of a regular GOP (Group
Of Picture) of (IBBPBBPBB) in which the packet importance is
ordered decreasingly: I (Intra images), P (Predicted images), B (Bi-
directional predicted/interpolated images) [Furht99]. To guarantee a
certain quality a receiver should be able to receive in time at least m
such packets per every k totally transmitted packets. The extent to
describe how a system may tolerate missed deadlines has to be stated
precisely. On the other hand, HRT systems make stringent
assumptions and state that all deadlines must be met. But in practice,
many systems being classified HRT are not so « hard ». Occasional
deadline misses can be tolerated without necessarily leading to system
failing if they are correctly distributed according to a specific pattern.
For example, process control applications often give sampling (or
message generating) period as deadline. But missing some of them
can be tolerated [Ramamritham96]. Moreover when we consider a
distributed system, taken together the worst-case response times (task
execution and message transmission) and hard deadlines may be
simply unfeasible for a large set of supporting system (in terms of

available computer power and network bandwidth). Another problem
that a HRT may arise is that HRT guarantee is often under « good
hypothesis » on the environment perturbation model. However the
randomness of environment can simply lead to the HRT guarantee
impossible [Navet99], [Navet00].

To resolve those problems, a new approach based on (m, k)-firm
idea [Hamdoui95] called weakly-hard real-time (WHRT) has emerged
to deal with real-time systems that permit some deadline misses
without violating the behavior of applications. A lot of work has been
done in this field to characterize the WHRT systems [Bernat97],
[Bernat01] and defines a WHRT system as a system that can tolerate
some degree of missed deadlines provided that this number of missed
deadlines is bounded and precisely distributed. The most significant
WHRT constraint is (m, k)-firm constraint and which consists of
guaranteeing m out of k consecutive task executions or message
transmissions, otherwise, the system is said to be in failure state.

New strategies to schedule systems with (m, k)-firm constraints or
other similar constraints (e.g. window-constrained [West00], skip-
over [Koren95]) have been defined [Bernat01], [Hamdaoui95],
[Hamdaoui97], [Lindsay99], [Ramanathan99], [Quan00], [Striegel00]
and the comparison criterion between these scheduling approaches is
mainly the failure state probability. The simplest (m, k)-based
scheduling policy is Distance Based Priority (DBP) proposed by
[Hamdaoui95] which is used to schedule multiple message streams
competing for service on a single server (MIQSS model) having each
its own (mi, ki)-firm constraints. It has been shown [Hamadaoui95]
that when streams have very different (mi, ki)-firm requirements and
are identical (i.e. with the same message transmission time
distribution, the same message inter-arrival distribution and the same
deadline distribution), DBP is especially beneficial to tighten the
failure probability based on the distance to a failure state. However,
the identical streams case may be realistic for systems like video
packet transmission but can be no longer true for other real time
systems. Just consider the factory communication systems based on
switched Ethernet [Song02], both small data packets (64 bytes)
exchanges for process control and great data packet (1500 bytes) for
video supervision, file downloading, etc. can co-exist. In this case,
additional time-related parameters should be taken into account in

decision process when assigning the priorities. Therefore when
extending DBP of Hamdaoui and Ramanathan [Hamdaoui95], which
is initially designed for the identical streams case (video sources), to
the general real-time system with quite different stream sources, we
should take into account not only (m, k)-firm constraint but also other
real-time constraints, characterized by parameters like deadline,
processing time, generating period (or minimum inter-arrival time)
and the relative criticality among jobs from different streams. For
statement simplicity, we use hereafter the term “job” to represent
either a task invocation or a message.

The main idea of the matrix-DBP is to handle both (m,k)-firm
constraints and the other real-time constraints of streams. In the
following, after having formally described the MIQSS model in
section 2, we point out in section 3 a basic lack of DBP in assigning
priority. This will give us the opportunity to state in section 4
necessary schedulability conditions that enrich the well-known limit
on the workload. Section 5 presents matrix-DBP which outperforms
DBP in terms of failure probability in overload scenarios. Section 6
provides some simulation results for performance evaluation of
matrix-DBP. Finally in section 7 we give conclusions and point out
future work.

2. MIQSS model

Multiple input queues single server (MIQSS) model can be used to
study a large category of computer and telecommunication systems
such as multiple tasks execution in a CPU, transmission of messages
issued from multiple message stream sources sharing a same
transmission medium or network interconnection equipment. The
proposed model is made up of N sources generating N streams of jobs
τi (i = 1, 2, … N) attempting to be served by a single server.

Each stream is formed by a source and a waiting queue, where a job
issued from a source waits until chosen by the server. The server
chooses jobs at the head of queues according to its scheduling policy.
We assume a service is non-preemptive as we mainly aim to message
transmission applications. Preemptive server case has been studied in
[Ramanathan99]. Notice that even in task execution context it is not

always desirable to preempt task in execution because of additional
context switching overheads.

 Scheduling
Algorithm

Server

Processing
Unit

FIFO buffer Source

.

.

.

Figure 1. MIQSS model

Although streams can be periodic or aperiodic (i.e. jobs are
randomly generated), we only consider the following periodic
sources. In fact, in real-time community it is common to also consider
sporadic traffic as periodic by taking the minimum inter-arrival time
of jobs as period. In practice, for most of transmission systems this
minimum inter-arrival time does exist (e.g. 64-bytes packet + 96-bits
IFS in Ethernet, leaky bucket smoothed input traffic). We characterize
a stream τi by: { }, , , ,i i i i i iT D c m kτ = , with i = 1, 2,…, N representing
the index of sources, Ti the job generating period (can be message
generation or task invocation period), Di the associated deadline, ci the
job service time on the server (can be the transmission duration of a
message or execution time of a task) and mi the number of jobs
meeting their deadline in ki consecutive served jobs. We notice that we
do not specify the release time (or offset) for τi in order to make our
result more general. Moreover it is difficult to synchronize the sources
in practice.

3. DBP and its drawback

DBP was firstly introduced by Hamdaoui and Ramanathan
[Hamdaoui95], as a dynamic priority assignment mechanism for jobs
under (m, k)-firm constraint in a MIQSS model.

The basic idea of DBP algorithm is quite simple and
straightforward: the closer the stream to a failure state the higher its
priority is. A failure state occurs when the stream’s (m, k)-firm
requirement is transgressed, i.e., there is more than k - m deadline
misses within the last k-length window.

So for each stream source jτ , which requires an (mj, kj)-firm, the
priority is assigned based on the number of consecutive deadline
misses that leads the stream to violate its (mj, kj)-firm requirement.
This number of deadline misses is referred to as distance to failure
state from current state. The evaluation of this distance can be done by
considering the recent history of jτ . The key to do this is the k-
sequence.

The k-sequence is a word of k bits ordered from the most recent to
the oldest job in which each bit keeps memory of whether the deadline
is missed (bit = 0) or met (bit =1). In this paper, the leftmost bit
represents the oldest. Each new arrival job causes a shift of all the bits
towards left, the leftmost exits from the word and is no longer
considered, while the rightmost will be a 1 if the task has met its
deadline (i.e. it has been served within) or a 0 otherwise. Figure 2
gives an example with (4,5)-firm constraint.

11011

10111

10110

Deadline
Met

Deadline
Missed

Figure 2. Possible evolution of the k-sequence

The priority assigned by DBP to a job at a given instant is equal to
the distance of the current k-sequence to a failure state. This distance
can be easily evaluated, by adding in the right side 0s until failure
state and the number of added 0s is the priority. If a stream is already
in failure state (i.e., less than m 1s in the k-sequence), the highest
priority 0 is assigned. For example, considering a stream with (3,5)-
firm constraint, the current job ji+1 is set the priority of 2 if its previous
five consecutive jobs construct the state of (11011), and is set the

priority of 3 if its previous five consecutive jobs construct the state of
(10111).

Formally, according to [Hamdaoui95] priority is evaluated as
follows. Let ()j

i
j

i
j

kij js δδδ ,,, 11 −+−= denote the state of the previous k
consecutive jobs of jτ , (),jl n s

denote the position (from the right) of
the nth meet (or 1) in the js , then the priority of the (i+1)th job of jτ is
given by :

()1_ , 1j
i j j j jP DBP k l m s+ = − +

 (1)

We note that if there are less than n 1s in s, (),jl n s = kj + 1, so that

the highest priority (= 0) will be assigned. This is normal as the source
is in failure state.

Figure 3 shows where DBP is used for priority assignment. One of
the interests of this on-line priority assignment scheme is it can be
easily and efficiently implemented in hardware as each stream’s
history can be kept in a kj-bit shift register.

),,,(11

1
1

11 iiki δδδ −+−

),,,(22
1

2
12 iiki δδδ −+−

2
1

2
2

2
3 ,,, +++ iii jjj

),,,(11
N

i
N

i
N

ki N δδδ −+−

N
i

N
i

N
i jjj 123 ,,, +++

1
1

1
1, ++ ii pj1

1
1

2
1

3 ,,, +++ iii jjj

2
1

2
1, ++ ii pj

N
i

N
i pj 11, ++

DBP

DBP

DBP

Server

...

...

1τ

Nτ

2τ

x
ij : i th job of stream x x

ip : priority of ith job of stream x
Figure 3. DBP for priority assignment of head-of-queue’s jobs

In case of priority equality among the head-of-queue’s jobs of
different streams, EDF (Earliest Deadline First) is used by default.

One of the problems faced with DBP, is that it assigns priorities
only considering one jτ ’s (mj, kj)-firm constraint without comparing it
to the others sharing the same server. This self-reference behavior
may lead to a situation where more than one stream get the same

priority at the same time, in this case an algorithm to choose among
them should be defined.

It is also important to underline that DBP chooses priority based on
the history of the stream’s k-sequence, and doesn’t take into account
any specific information on the actual attributes of the stream like its
length cj, its minimum inter-arrival time Tj , and its deadline Dj.

The simplest and common way to overcome these problems is to
assign DBP-based priority to the jobs and, in case of priority equality,
use another scheduling algorithm among the already known ones.

In their paper, Hamdaoui and Ramanathan [Hamdaoui95] combined
DBP with Earlier Deadline First (EDF). However this solution gives
to Deadline less importance than that given to the k-sequence, since
EDF would be used only when k-sequence is not sufficient, i.e. when
two streams get the same DBP-priority. In general, according to our
earlier simulation study, using DBP with a dynamic sub-algorithm to
choose in ambiguity cases may be quite disappointing. Sometimes,
underestimating the information on cj, Tj and Dj may lead to very poor
results.

Consider the simple case of two streams:

Table 1. Simple Case Flow Parameter

 (m,k)-
constraint

Service
time
(ms)

Period/
Deadline

Initial k-
sequence

Sa (4,5) 15 30 {01111}
Sb (2,5) 2 5 {00101}

According to equation 1 the former stream has higher priority since

its DBP distance is 2, while the latter has a distance of 3. However,
transmitting the job for stream Sa may cause a dynamic failure state
for stream Sb as shown in figure 4.

This is because during the service of a job from first stream, up to
three jobs of stream b are generated and consequently miss their
deadlines. While choosing stream Sb will not generate a failure state
for stream Sa.

t

01111 11111

t

00101 01010 10100 01000
15 ms

× × ×

a:

b:

5 ms
Figure 4. Worst Sb behaviour during service of Sa

This lack can be exploited in several ways, always keeping DBP as
basic priority assignment function, depending on what complexity we
want to introduce.

In what follows we show a specific method, which makes an
average good performance without increasing drastically the
complexity of the algorithm. Before doing this, we state a new
necessary condition for schedulability taking into account the non-
preemption and relationship between different sources.

4. Necessary schedulability conditions

Given a set of N periodic sources τ = (τ1, τ2, …, τN) with
{ }, , , ,i i i i i iT D c m kτ = and with whatever release times (or offsets), the

set τ is said schedulable (or feasible) if it is possible to find a
scheduling algorithm allowing to meet all (mi, ki)-firm constraints (for
i = 1, …N). A necessary schedulability condition just means if it is not
satisfied the set is surely unschedulable. But the scheduling algorithm
can be very complex and finding it can be NP-hard. Whilst a sufficient
schedulability condition, if it is satisfied, guarantees that the set meets
its (mi, ki)-firm constraints with a known scheduling algorithm. The
research of the sufficient schedulability condition is beyond the scope
of this paper.

For a given set of N periodic sources τ, before to schedule them, it
is important to have an idea on if the set is schedulable according to its
(m,k)-firm constraints. We derive the following schedulablity tests for
a set of (m, k)-firm streams.

Condition 1: General Schedulability

1
1

N
i i

i i i

c m
T k=

 
≤ 

 
∑ (2)

This formula states that to have a schedulable set it is necessary, but

not sufficient, to satisfy that the overall normalized workload be less
than or equal to 1. Otherwise, as the queueing time is unbounded, we
are sure that the (mi, ki)-firm constraints will be violated and no
deterministic guarantee is anyway possible. Note that the blocking
factor due to non pre-emption is not considered in equation 2 as we
are only stating the necessary condition.

Also, consider the case we have the same stream Sa of the previous
paragraph and instead of Sb a stream Sc with (2,5)-firm constraint
with deadline Dc = Tc = 3ms and service time cc = 1. The equation 2 is
satisfied for this case. However, even when stream Sc is in the farthest
state from failure with k-sequence {xxx11} it cannot stand the service
of any job from source Sa, because the number of deadline misses (at
least four) is more than the (2, 5) constraints admissible (three). Figure
5 shows this situation. This suggests as additional necessary condition
that two sources are mutually schedulable only if the minimum number
of deadlines missed by one source while serving the another one is
less than the upper limit allowed by (m, k)-firm constraint.

A

B

Figure 5. Possible effect of an offset between jobs of two streams

The number of deadline misses that stream Sc have to stand during
stream Sa service time can change depending on the time actually left
to serve the first job from stream Sc at the moment stream Sa starts its
service (offset).

Given two streams, we are interested in evaluating the least
number of deadline misses of one stream that would occur during the
service time of another stream. For the example of Figure 5, this least
number (corresponding to the best situation for stream Sc) is shown in
part B, when the initial offset is equal to cc.

More generally, for finding the least number, let us consider the
best situation for a stream Sc during the service time of a stream Sa
(Figure 6).

Sa

Sc

Ca

Cc

Tc

Figure 6. Best case for Sc: Sa starts its service when Sc terminates

Assume that during the service time of a job of stream Sa, at least
one job from stream Sc is missed; in this case we can write (Fig.6):

ca - (Tc - cc) > Dc - cc. (3)

On the other hand, the inequality that ensures us that not more

than one deadline is missed is:

ca - (Tc - cc) ≤ Tc + Dc - cc (4)

Now discarding the assumption of just having one deadline miss
of stream Sc during the service of a job form stream Sa, and let us call
nc,a the minimum number of deadline misses for stream Sc during the
service time of a job from stream Sa; for nc,a ≥ 1 we can write:

ca - (Tc - cc) > (nc,a - 1)Tc + Dc - cc (5)

ca - (Tc - cc) ≤ nc,aTc + Dc - cc (6)

Fig. 5 shows the case with nc,a = 5.
From (5) and (6), since nc,a must be an integer, we conclude:

,
2 1a c c

c a
c

c c Dn
T

 + −= − 
 

 (7)

This formula gives the minimum number of deadlines missed by

stream Sc during a job from stream Sa is served.
What happens if nc,a = 0 ? In this case the equation (7) may return

either 0 or –1. This is because equation (5) evaluated for nc,a = 0
differs from equation (3) with a term -Tc. However we can still use
equation (7) by just adding a boundary condition that, whenever nc,a =
-1, it should be replaced by nc,a = 0.

If we can assume that the deadline is equal to the period (Dc = Tc),
the previous formula becomes:

2 2a c
c

c

c cn
T

 += − 
 

 (8)

In the same way we can define na,c, na,a and nc,c, For our proposal

only na,c, nc,a will be used.

Definition 1
In a MIQSS model, two streams τi and τj are said mutually

schedulable if ni,j is less than the maximum acceptable consecutive
deadline misses for stream i and if nj,i is less than the maximum
consecutive deadline misses for stream j.

Depending on the possible temporal constraint definitions in
[Bernat01] (e.g. (m, k)-firm or ,m k m=) this statement can be
expressed by different formulas.

In the following we only interest in (m, k)-firm constrained streams.
According to (m, k)-firm definition we have:

Condition 2: Mutual Schedulability

i,jn i ik m≤ −

j,in j jk m≤ −

In order to extend this condition from two streams to a system with
N streams, we give the following definition.

Definition 2
N streams are mutually schedulable if each couple of streams is

mutually schedulable.

This necessary condition can be used together with the condition on

the workload to have a more restrictive necessary condition, since
even a system with load less than 1 can be found non schedulable
according to the proposed criterion.

Theorem
A set of N streams is not schedulable if it does not satisfy the mutual

or general schedulability test.

As a proof, it is sufficient to evaluate the load for the system made

up of streams Sa and Sc of the example given in Figure 5 and note that
in this case this system is not schedulable.

5. Matrix-DBP

In previous sections we arrived to point out the self-reference
problem of DBP for dealing with heterogeneous streams and the need
to take into account the relative criticality between streams as they

share a same server. However how to correct these DBP’s lacks is not
trivial. In this section, we propose to enhance the DBP priority
assignment scheme by exploiting the minimum number of missed
deadlines that might occur during the service times of the concurrent
jobs from the other streams.

5.1 – Mutuality matrix
The heart of the algorithm we propose is a static matrix, called

Mutuality Matrix, that must be updated each time the server admits a
new stream or closes the connection of an old one. In general the
matrix should be updated whenever a stream character is changed
(e.g., service time, deadline or period changes). However, only the
line and the row associated to the stream where occurred changes have
to be updated, which makes the most part of these updates very fast.

The generic element of the matrix mi,j is the minimum consecutive
number of deadlines the ith stream can miss while stream j is being
served. Our purpose is to enhance the priority assignment scheme of
DBP using the minimum number of deadline misses that may occur,
so a lower bound to the actual number of deadline misses is adopted.
Using the same reasoning carried out in previous paragraph and
bearing in mind that all negative values (mi,j=-1) must be shifted to
zero, equations (9) and (10) give the value of matrix-elements.

,

2
max(0, 1)j i i

i j
i

c c D
m

T
+ − 

= − 
 

 (9)

And, under the hypothesis of Di =Ti :

,

2
max(0, 2)j i

i j
i

c c
m

T
+ 

= − 
 

 (10)

5.2 – Matrix-DBP priority
Now, each time the server has to choose between two or more

concurrent streams’ jobs, it updates their DBP priority by subtracting
from DBP distance the corresponding matrix element. Otherwise DBP

priority is used. We note that in our proposal this DBP priority update
is done dynamically rather than statically. In fact, only the DBP
priorities of the concurrent jobs (i.e., head-of-queue’s jobs) are
updated. After this DBP priority update the concurrent jobs are with
the matrix-DBP priorities. In case of matrix-DBP priority equality
EDF is used by default.

Let Boolean variable Qj(t) denote whether the input queue of stream
jτ is empty or not at time t. Qj(t) = 1 when the queue is not empty. The

vector (Q1(t), Q2(t), …, QN(t)) can than be used to know the
concurrent jobs at time t. Formally, the priority of the (i+1)th job of

jτ is given by :

1 1 ,1,...
_ _ (())j j

i i j k kk N
P MatrixDBP P DBP max m Q t+ + =

= −

 (11)

where
1_ j

iP DBP+

 is given by equation (1).

Assuming we are checking source Sa and source Sb, defined in the

last section. In this simple case, the matrix we have is the following:

0 0
2 0

M  
=  
 

As we said above DBPa is 2 whilst DBPb is 3, but these distances

have to be updated by subtracting the corresponding mutual matrix
element from it as the following:

,_ _ 2a a a bP MatrixDBP P DBP m= − =

,_ _ 1b b b aP MatrixDBP P DBP m= − =

With this correction, higher priority is assigned to source Sb rather
than Sa.

Note that mb,a is a lower bound of the consecutive deadline misses
that can occur while a job of Sa is in service, it actually can be mb,a or
mb,a+1.

More generally because of our initial problem setting: non-
preemption and unspecified relative offsets (or release times) between

streams, it is unfortunately impossible to find the actual value of a
matrix element. So the correction of DBP priority by the matrix will
not always result in performance improvement as can be seen in the
following. By simulations we have found that sometimes using mi,j +
1 instead of mi,j can produce better performance. However how to
conjunctionally use both mi,j and mi,j + 1 is still an open problem.

6. Performance evaluation

To evaluate the performance of matrix-DBP we proposed and to
compare it with DBP, following scenario is simulated.

Table 2. Simulation Workload

 (m,k)-
constraints

Job Process
time

Period/
Deadline

Stream 0 (2,5) 8/c 12
Stream 1 (4,5) 10/c 20
Stream 2 (3,6) 2/c 5
Stream 3 (1,5) 4/c 6

For this scenario, the processing power of the server c varies from

1.00 to 1.50. The case of c = 1 corresponds to a total workload of 1
according to the general schedulability test (see equation 2). The
mutual matrix with c = 1 is:

0 1 0 0
0 0 0 0
1 1 0 0
1 1 0 0

M

 
 
 =
 
 
 

So the mutual schedulability test is also satisfied as in Table 2 any k

– m ≥ 1. This matrix becomes for the first time all zero when c = 1.5
(m3,1 is the last element to become zero according to equation 10). The

simulation for c > 1.5 gives the same performance for matrix-DBP and
DBP.

Whenever DBP or Matrix-DBP cannot choose by itself, EDF is
used by default.

Failure state rate as well as deadline miss rate are evaluated for
assessing the global performance and per-stream performance.

6.1 – Global performance
Figure 7 shows the comparison for the whole system in terms of

failure states between DBP and matrix-DBP.

0%

10%

20%

30%

40%

50%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,
2

1,
22

1,
24

1,
26

1,
28 1,
3

1,
32

1,
34

1,
36

1,
38 1,
4

1,
42

1,
44

1,
46

1,
48 1,
5

F Matrix+Edf F Dbp+Edf

Figure 7. Failure States percentage

The number of failure states is evaluated. Each point of the graphic
represents the number of failure states divided by the number of jobs
generated by all the stream sources during the simulation, for varying
processing power of the server (c goes from 1 to 1.5).

It can be seen that matrix-DBP produces less failure state than DBP
in average. Note that matrix-DBP satisfies (m, k)-firm constraint for c
within [1.31, 1.37] while the basic DBP only for c within [1.34, 1.36].
However, there are server power ranges for which matrix-DBP does
not give the better performance than that of DBP. This is because of
the inaccurate estimation of the matrix elements mi,j in the matrix-DBP
(as explained in section 5, due to the non-preemption, it could actually
be mi,j or mi,j +1). In dynamic priority assignment the aim, until an
exhaustive mathematical approach won’t be given, is to find a
scheduling algorithm that in average works better than the others. A

good idea of the behavior of matrix-DBP is given by the two curves
shown in figure 8: they are plotted in polynomial fitting (fourth order
of the curve of Fig. 7).

0%

5%

10%

15%

20%

25%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,
2

1,
22

1,
24

1,
26

1,
28 1,
3

1,
32

1,
34

1,
36

1,
38 1,
4

1,
42

1,
44

1,
46

1,
48 1,
5

Polynomial (F Dbp+Edf)

Polynomial (F Matrix+Edf)

Figure 8. Polynomial representation of Failure States

Fig. 8 shows clearly the non-monotonic behavior of non-preemptive
systems in terms of the failure states percentage vs. system total load.

As c grows the elements of the mutuality matrix approach to zero
(The matrix becomes all zero for the first time when c = 1.5). It means
that there will be a server capacity over which the behavior of both
algorithms is exactly the same.

Figure 9 shows the comparison between DBP and matrix-DBP in
terms of deadline misses percentage.

0%
10%
20%
30%
40%
50%
60%
70%
80%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,

2
1,

22
1,

24
1,

26
1,

28 1,
3

1,
32

1,
34

1,
36

1,
38 1,

4
1,

42
1,

44
1,

46
1,

48 1,
5

D Matrix+Edf D Dbp+Edf

Figure 9. Deadline misses percentage

It shows that using matrix-DBP leads to a deadline misses
percentage never higher than that of DBP.

The fact that the failure state percentage (Fig. 7) is not a direct
consequence of the deadline misses percentage (Fig. 9) can be easily
understood. As we explained in our introduction, (m, k)-firm system is
different from the SRT one with m/k deadline misses percentage.
Since how missed deadlines are distributed in the k-sequence is also
token into account in the (m, k)-firm system.

Fig. 7 to 9 only show the global performance improvement of
Matrix-DBP (point of view that interests the system designer). To
understand how this improvement is achieved, let us examine the
individual performance changes for each stream (point of view that
interests end-users).

6.2 – Per-stream performance
Figures 10.1 and 10.2 show the behavior of DBP and matrix-DBP

only for stream 0 of table 2.

0%

5%

10%

15%

20%

25%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,

2
1,

22
1,

24
1,

26
1,

28 1,
3

1,
32

1,
34

1,
36

1,
38 1,

4
1,

42
1,

44
1,

46
1,

48 1,
5

F Matrix0 F Dbp0

Figure 10.1. Failure States for Stream 0

As the constraint is (2, 5)-firm, we can tolerate in average until 3/5
= 60% of deadline misses. However this deadline misses may cause a
failure state, if their distribution does not fit the (2,5)-firm constraints.
This explains why even if deadline misses is under 60% for some
values of c from c = 1 to c = 1.20, the corresponding failure state
percentages are not 0%. The failure states percentage turns to 0% from
c = 1.17.

0%

10%

20%

30%

40%

50%

60%

70%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,

2
1,

22
1,

24
1,

26
1,

28 1,
3

1,
32

1,
34

1,
36

1,
38 1,

4
1,

42
1,

44
1,

46
1,

48 1,
5

D Matrix0 D Dbp0

Figure 10.2. Deadline misses for Stream 0

It is also important to understand that the fact that stream 0 with
matrix-DBP misses more deadlines than with DBP from c = 1.17 to c
= 1.35, but without turning into failure state, is a very positive fact:
matrix-DBP makes stream 0 transmit exactly the minimum number of
packets it needs to keep in the success state, with the correct deadline
miss distribution; this way it spares server resources to other streams.

In similar way, Figures 11 to 13 show the behavior of DBP and
matrix-DBP for respectively the streams 1, 2 and 3.

0%
10%
20%
30%
40%
50%
60%
70%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,

2
1,

22
1,

24
1,

26
1,

28 1,
3

1,
32

1,
34

1,
36

1,
38 1,

4
1,

42
1,

44
1,

46
1,

48

F Dbp1 F Matrix1

Figure 11.1. Failure States for Stream 1

0%

5%

10%

15%

20%

25%

30%

35%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,

2
1,

22
1,

24
1,

26
1,

28 1,
3

1,
32

1,
34

1,
36

1,
38 1,

4
1,

42
1,

44
1,

46
1,

48

D Matrix1 D Dbp1

Figure 11.2. Deadline misses for Stream 1

For stream 1, DBP performs better than Matrix-DBP, but this is not
astonishing: the scheduling algorithm chooses to distribute its resource
among the other streams, as it should be clear from the analysis of the
other graphs. Moreover, even if the failure state percentile is very
high, it depends on the fact that the period is made up by few jobs (i.e.
it is short), and not on the fact that dropped jobs are much more than
in the case of DBP (Failure states increase of 66.6% whilst deadline
misses only of 16.6%).

0%

20%

40%

60%

80%

100%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,

2
1,

22
1,

24
1,

26
1,

28 1,
3

1,
32

1,
34

1,
36

1,
38 1,

4
1,

42
1,

44
1,

46
1,

48 1,
5

F Matrix2 F Dbp2

Figure 12.1. Failure States for Stream 2

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,

2
1,

22
1,

24
1,

26
1,

28 1,
3

1,
32

1,
34

1,
36

1,
38 1,

4
1,

42
1,

44
1,

46
1,

48 1,
5

D Matrix2 D Dbp2

Figure 12.2. Deadline misses for Stream 2

Stream 2 has a (3,6)-firm constraint. Missed Deadline rates are

under 50% but, as we pointed out when introducing the concept of (m,
k)-firm, it is not enough to maintain the deadline miss rate under a
given threshold. In this case, even if the deadline miss rate is lower
than 3/6 = 50%, the deadline miss distribution is not met for (3,6)-firm
constraint, that is why it experiences failure states (Fig. 12.3).
However, we can note that number of deadline misses and failure
states are kept lower for Matrix-DBP than for DBP.

×××× ×××× ×××× ×××× ×××× ××××

t1 0 0 1 0 1
0 0 1 0 1 0

0 1 0 1 0 1
1 0 1 0 1 0

0 1 0 1 0 1
1 0 1 0 1 0

0 1 0 1 0 1
1 0 1 0 1 1

0 1 0 1 1 0
1 0 1 1 0 0

0 1 1 0 0 1
1 1 0 0 1 01 1 0 0 1 0

6 0 6 5 7 0 7 5 8 0 8 5 9 0 9 5 1 0 0 1 0 5 1 1 0 1 1 5 1 2 0

×××× ×××× ×××× ××××

t
8 4 0 8 4 5 8 5 0 8 5 5 8 6 0 8 6 5 8 7 0 8 7 5 8 8 0 8 8 5 8 9 0 8 9 5 9 0 0

1 1 1 0 1 1
1 1 0 1 1 1

1 0 1 1 1 0
0 1 1 1 0 1

1 1 1 0 1 0

1 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 1

0 1 0 1 1 1

1 0 1 1 1 0

0 1 1 1 0 1
1 1 1 0 1 1

D B P

M a t r i x - D B P

Figure 12.3. Deadline misses distribution for Stream 2 (c = 1,37)

0%

5%

10%

15%

20%

25%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,

2
1,

22
1,

24
1,

26
1,

28 1,
3

1,
32

1,
34

1,
36

1,
38 1,

4
1,

42
1,

44
1,

46
1,

48 1,
5

F Matrix3 F Dbp3

Figure 13.1. Failure States for Stream 3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

1
1,

02
1,

04
1,

06
1,

08 1,
1

1,
12

1,
14

1,
16

1,
18 1,

2
1,

22
1,

24
1,

26
1,

28 1,
3

1,
32

1,
34

1,
36

1,
38 1,

4
1,

42
1,

44
1,

46
1,

48 1,
5

D Matrix3 D Dbp3

Figure 13.2. Deadline misses for Stream 3

Globally, we notice that matrix-DBP has trend to worsen the

deadline meeting of stream 0 and 1 and favors the stream 2 and 3.
This phenomena can be easily understood as favoring small jobs leads
to decrease more efficiently the failure state numbers (or percentage)
as matrix-DBP aims to decrease this parameter. For the same reason,
one can notice that Matrix-DBP is not fair in terms of failure state
percentage per stream.

7. Conclusion

The main original contributions of this paper are:
• Pointed out the drawback of DBP when it is applied to a

more general real-time context
• Provided an additional necessary condition call mutual

schedulability test
• Proposed matrix-DBP to correct DBP by subtracting from

it the number of deadlines a stream is going to miss in the
current situation; the proposed algorithm assumes this
number is the minimum possible.

Matrix-DBP makes possible to take into account deadline, inter-
arrival time, service time and relative criticality in the priority
assignment scheme. Comparing to earlier solutions such as DBP+EDF
which also uses deadline, in matrix-DBP these parameters are directly
used within the priority assignment scheme. This means that the
history of the stream is no longer more important than the information
on the actual timing requirements of the stream, but the two elements
are considered with the same weight in the priority assignment
scheme.

More deeply, the solution of adding an already known scheduling
algorithm to DBP meant to use two different decision processes,
which is the reason that leads to give different importance to the two
sets of information: these two processes cannot be used in parallel !
The idea we proposed, instead, merges the information that DBP
ignores.

Simulations showed that matrix-DBP always outperforms DBP in
terms of the global deadline miss ratio (Figure 9) and reduces in
average the global failure state probability when the server is heavily
loaded (Figures 7 and 8).

This improvement is with a very low computing cost or
complexity since it is done by checking elements of a static matrix.
This matrix, in fact, needs to be updated only when data regarding a
stream source are changed or a new one is added. Even in this case it
needs to update only the line and the row associated with that stream.
In this sense, the implementation of our algorithm in an admission

control mechanism for providing (m, k)-firm guarantee in a network
should be interesting.

One of our on going work is the extension of matrix-DBP towards
multi-hop case [Lindsay99], [West00] by considering an additional
parameter: the total end to end deadline.

References

[Bernat01] G. Bernat, A. Burns and A. Llamosi, “Weakly-hard real-time systems”,
IEEE Transactions on Computers, 50(4), pp.308-321, April 2001.

[Bernat97] G. Bernat and A. Burns, “Combining (n, m)-hard deadlines and dual
priority scheduling”, Proceedings of Real-Time Systems Symposium, pages 46–
57, Dec 1997.

[Cruz91] R. L. Cruz, “A calculus for network delay, Part I”. IEEE Transactions on
Information Theory, 37(1):114-131, Jan. 1991.

[Furht99] B. Furht (Editor), Handbook of multimedia computing, CRC Press LLC,
1999.

[Hamdaoui95] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m, k)-firm deadlines”, IEEE Transactions on
Computers, 44(4), 1443–1451, Dec.1995.

[Hamdaoui97] M. Hamdaoui and P. Ramanathan, “Evaluating Dynamic Failure
Probability for Streams with (m, k)-firm Deadline”, IEEE Transactions on
Computers, 46(12), pp.1325–1337, Dec.1997

[Koren95] G. Koren and D. Shasha, “Skip-over: Algorithms and complexity for
overloaded systems that allows skips”, Proceedings of Real-Time Systems
Symposium, pages 110–117, Dec. 1995.

[Koubaa02] Koubâa A. and Y.Q. Song, « Evaluation de performances d'Ethernet
commuté pour des applications temps réel » Proceedings RTS’2002 Paris
(France) 26-28 Mars 2002.

[Lehoczky90] Lehoczky, J.P., “Fixed priority scheduling of periodic task sets with
arbitrary deadlines”, Proc. of IEEE Real-time systems symposium, IEEE
Computer Press, pp.201-209, Los Alamitos, CA (USA), 1990.

[Lindsay99] W.Lindsay and P. Ramanathan, “DBP-M, A Technique for Meeting
end-to-end (m, k)-firm Guarantee requirements in point-to-point networks”,
Proceedings of IEEE Conference on Local networks, pp.294-303, 1999.

[Navet99] N. Navet, Y.Q. Song, "Reliability improvement of the dual-priority
protocol under unreliable transmission", Control engineering practice, 7
(1999) pp975-981.

[Navet00] N. Navet, Y.Q. Song, F. Simonot, "Worst-case deadline failure
probability in real-time applications distributed over CAN (controller area
network)", Journal of systems architecture - the EUROMICRO Journal, 46
(2000) pp607-617.

[Quan00] G. Quan and X. Hu, “Enhanced Fixed-priority Scheduling with (m, k)-
firm Guarantee”, Proc. Of 21st IEEE Real-Time Systems Symposium, , pp.79-
88, Orlando, Florida, (USA), November 27-30, 2000.

[Ramamritham96] Ramamritham, K., “Where do time constraints come from and
where do they go?”, International Journal of Database Management, 7:2,
1996.

[Ramanathan99] P. Ramanathan, “Overload management in Real-Time control
applications using (m, k)-firm guarantee”. IEEE Transactions on Parallel and
Distributed Systems, 10(6):549–559, Jun 1999

[Song02] Song, Y.Q., A. Koubâa and F. Simonot, “Switched Ethernet for real-time
industrial communication: Modelling and message Buffering delay
evaluation”, 4th IEEE WFCS 2002, Vasteras (Sweden), 27-30 August 2002.

[Striegel00] A. Striegel, G. Manimaran, “Best-effort Scheduling of (m,k)-firm Real-
time Streams in Multihop Networks”, International Workshop of Parallel and
Distributed Real-Time Systems (WPDRTS2000), Cancun (Mexico), May 1-2,
2000.

[West00] R. West and C. Poellabauer, “Analysis of a Window-Constrained
Scheduler for Real-Time and Best-Effort Packet Streams”, Proc. of 21st IEEE
Real-Time Systems Symposium, Orlando, Florida, (USA), November 27-30,
2000.

	Condition 1: General Schedulability
	Theorem

	5.1 – Mutuality matrix
	5.2 – Matrix-DBP priority
	6.1 – Global performance
	6.2 – Per-stream performance

