Database Classification by Hybrid Method combining Supervised and Unsupervised Learnings

Torres-Moreno Juan-Manuel 1 Laurent Bougrain 1 Frédéric Alexandre 1
1 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : This paper presents a new hybrid learning algorithm for unsupervised classification tasks. We combined Fuzzy c-means learning and the supervised version of Minimerror to develop a hybrid incremental strategy allowing unsupervised classifications. We applied this new approach to a real-world database in order to know if the information contained in unlabeled signals of a Geographic Information System (GIS), allow to well classify it. Finally, we compared our results to a classical classification obtained by a multilayer perceptron.
Type de document :
Communication dans un congrès
International Conference on Artificial Neural Networks - ICANN'2003, Jun 2003, Istambul, Turkey, pp.37-40, 2003
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00107724
Contributeur : Publications Loria <>
Soumis le : jeudi 19 octobre 2006 - 09:07:02
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48
Document(s) archivé(s) le : mercredi 29 mars 2017 - 12:52:15

Identifiants

  • HAL Id : inria-00107724, version 1

Collections

Citation

Torres-Moreno Juan-Manuel, Laurent Bougrain, Frédéric Alexandre. Database Classification by Hybrid Method combining Supervised and Unsupervised Learnings. International Conference on Artificial Neural Networks - ICANN'2003, Jun 2003, Istambul, Turkey, pp.37-40, 2003. 〈inria-00107724〉

Partager

Métriques

Consultations de la notice

507

Téléchargements de fichiers

72