Recurrent Neural Networks for mobile phone cell planning using topological information

Laurent Bougrain 1 Frédéric Alexandre 1
1 CORTEX - Neuromimetic intelligence
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Real-world problems are often characterized by the large size of their input space, the noise which is added to these data and by the complexity of the underlying physical laws. These laws are often continuous and more information can be brought to the understanding of the problem if contextual hints are added. This contextual information yields close behaviors. This topology is itself often linked to the topology of the input space. This paper explores how recurrent models can improve prediction in a radio communication problem with such contextual information
Type de document :
Communication dans un congrès
Fifth International Conference on Engineering Applications of Neural Networks - EANN'99, 1999, Warsaw, Poland, pp.195-199, 1999
Liste complète des métadonnées

https://hal.inria.fr/inria-00107746
Contributeur : Publications Loria <>
Soumis le : jeudi 19 octobre 2006 - 09:07:50
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48
Document(s) archivé(s) le : mercredi 29 mars 2017 - 12:54:16

Fichier

Identifiants

  • HAL Id : inria-00107746, version 1

Collections

Citation

Laurent Bougrain, Frédéric Alexandre. Recurrent Neural Networks for mobile phone cell planning using topological information. Fifth International Conference on Engineering Applications of Neural Networks - EANN'99, 1999, Warsaw, Poland, pp.195-199, 1999. 〈inria-00107746〉

Partager

Métriques

Consultations de la notice

127

Téléchargements de fichiers

52