Language modeling using dynamic Bayesian networks

Murat Deviren 1 Khalid Daoudi 1 Kamel Smaïli 1
1 PAROLE - Analysis, perception and recognition of speech
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : In this paper we propose a new approach to language modeling based on dynamic Bayesian networks. The principle idea of our approach is to find the dependence relations between variables that represent different linguistic units (word, class, concept, ...) that constitutes a language model. In the context of this paper the linguistic units that we consider are syntactic classes and words. Our approach should not be considered as a model combination technique. Rather, it is an original and coherent methodology that processes words and classes in the same model. We attempt to identify and model the dependence of words and classes on their linguistic context. Our ultimate goal is to devise an automatic mechanism that extracts the best dependence relations between a word and its context, i.e., lexical and syntactic. Preliminary results are very encouraging, in particular the model in which a word depends not only on previous word but also on syntactic classes of two previous words. This model outperforms the bi-gram model.
Type de document :
Communication dans un congrès
4th International Conference on Language Resources and Evaluation - LREC 2004, 2004, Lisbonne, Portugal, 2004
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00107786
Contributeur : Publications Loria <>
Soumis le : jeudi 19 octobre 2006 - 09:09:18
Dernière modification le : jeudi 11 janvier 2018 - 06:19:55
Document(s) archivé(s) le : mercredi 29 mars 2017 - 13:25:53

Identifiants

  • HAL Id : inria-00107786, version 1

Collections

Citation

Murat Deviren, Khalid Daoudi, Kamel Smaïli. Language modeling using dynamic Bayesian networks. 4th International Conference on Language Resources and Evaluation - LREC 2004, 2004, Lisbonne, Portugal, 2004. 〈inria-00107786〉

Partager

Métriques

Consultations de la notice

276

Téléchargements de fichiers

213