Knowledge-based Selection of Association Rules for Text Mining

Dietmar Janetzko Hacène Cherfi 1 Roman Kennke Amedeo Napoli 1 Yannick Toussaint 1
1 ORPAILLEUR - Knowledge representation, reasonning
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : A reoccuring problem in mining association rules is the selection of interesting association rules within the overall, and possibly huge set of extracted rules. The majority of previous work in this area relies on statistical methods for quality estimation and se-lection of association rules. However, strictly bottom-up approaches are oblivious of knowledge though knowledge may be available (e.g., provided by ontologies), and rule extraction may take advantage of it. In this paper, we conceive of the problem of selecting association rules as a classification task. A framework of a binary probabilistic classifier is introduced that uses ontologies in order to estimate whether and to which degree a rule expresses a mere taxonomic relationship. In so doing, selection of association rules (selection by elimination) is carried out by identifying and discarding trivial association rules.
Type de document :
Communication dans un congrès
R. Lopez de Màntaras and L. Saitta. 16h European Conference on Artificial Intelligence - ECAI'04, 2004, Valencia, Spain, IOS Press, pp.485-489, 2004
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00107787
Contributeur : Publications Loria <>
Soumis le : jeudi 19 octobre 2006 - 09:09:20
Dernière modification le : jeudi 11 janvier 2018 - 06:19:53
Document(s) archivé(s) le : mercredi 29 mars 2017 - 12:57:58

Identifiants

  • HAL Id : inria-00107787, version 1

Collections

Citation

Dietmar Janetzko, Hacène Cherfi, Roman Kennke, Amedeo Napoli, Yannick Toussaint. Knowledge-based Selection of Association Rules for Text Mining. R. Lopez de Màntaras and L. Saitta. 16h European Conference on Artificial Intelligence - ECAI'04, 2004, Valencia, Spain, IOS Press, pp.485-489, 2004. 〈inria-00107787〉

Partager

Métriques

Consultations de la notice

198

Téléchargements de fichiers

144