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Knowledge-based Selection
of Association Rulesfor Text Mining

Dietmar Janetzko! and Hacéne Cherfi? and Roman Kennke! and Amedeo Napoli? and Yannick Toussaint?

Abstract. A reoccuring problem in mining association rules is the
selection of interesting association rules within the overall, and pos-
sibly huge set of extracted rules. The majority of previous work in
this area relies on statistical methods for quality estimation and se-
lection of association rules. However, strictly bottom-up approaches
are oblivious of knowledge though knowledge may be available (e.g.,
provided by ontologies), and rule extraction may take advantage of
it. In this paper, we conceive of the problem of selecting association
rules as a classification task. A framework of a binary probabilis-
tic classifier is introduced that uses ontologies in order to estimate
whether and to which degree a rule expresses a mere taxonomic re-
lationship. In so doing, selection of association rules (selection by
elimination) is carried out by identifying and discarding trivial asso-
ciation rules.

1 INTRODUCTION

We propose a knowledge-based approach to select interesting asso-
ciation rules extracted from textual databases. Following the classi-
cal knowledge discovery schema [6], mining of association rules is
carried out in two steps: First, associations between sets of items in
databases are discovered (association rule extraction). Second, their
interestingness or quality is evaluated by a domain expert (analyst) or
by using statistical quality measures. A subset from the overall set of
association rules discovered is selected (association rule selection).
Association rules have been extracted from market basket databases,
but extracting and selecting association rules has also been studied
successfully in other domains, especially in text mining, e.g., [7, 5].
A number of algorithms, like Apriori [1] or Close [13] have been
designed to tackle the computationally expensive task of association
rule extraction. A problem that limits the extraction of association
rules is the difficulty to identify and select a subset of interesting
rules or, conversely, rules that are trivial. Selection of association
rules is usually addressed by using statistical quality measures. Sta-
tistical quality measures can easily be applied on the given data. They
proceed without using domain knowledge. A number of statistical
quality measures have been explored, and their agreement or non-
agreement is studied carefully (e.g., [12, 16]). However, quality mea-
sures like support or confidence do not suffice to solve this problem
since they often generate contradictory results. A more principled
problem of statistical approaches to rule selection is that it makes in-
dependent quality measurement of association rules impossible. By
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following a statistical approach quality measures of association rules
rely on the same information that has already been used to discover
association rules in the previous step. Apart from the data that feed
into the process of rule selection, there are often sources of knowl-
edge available that might be used for the same purpose (e.g., concep-
tual hierarchies or ontologies). In fact, there are knowledge-based
approaches introduced to association rule selection (e.g., [7]), but
they are are confined to a small number of information or knowledge
types.

A central hypothesis of this paper is the assumption that the key to
association rule selection is the usage of knowledge. The knowledge-
based approach presented in this paper works by conducting a neg-
ative selection or selection by elimination (rejection) of association
rules. The overall and possibly large set of rules provided as an output
of association rule mining is reduced by those rules that meet a partic-
ular criterion. Whether and to which degree an association rule meets
a considered criterion (i.e., exemplifying a mere taxonomic relation-
ship) is estimated by a probabilistic approach the details of which
are given below. In this way, the initial rule set can be compressed
since trivial or non-interesting association rules, i.e., rules that reveal
conceptual or taxonomic explanations of concepts, are identified and
discarded. Note, however, that by following a rejection-oriented ap-
proach we can not take the fact of a non-rejection of a rule as evi-
dence for its quality.

The paper is organised as follows: First, we present the overall for-
mal framework that spells out our approach for selecting association
rules. We will present examples that make use of simple ontologies,
which are built upon the hypernym-hyponym relationship. Second, a
probabilistic framework is introduced and is taken to carry out cal-
culations of the degree of fitness between each rule of a rule set ini-
tially mined and a model of the domain chosen (e.g., an ontology).
Third, we present an example taken from a text mining experiment
that illustrates in which way knowledge, i.e., ontologies, supports the
selection of association rules. The paper concludes with a discussion
of possible further extensions of the knowledge-based approach to
association rule selection.

2 SELECTING ASSOCIATION RULES
Association rules

Let 7 = {ti,...,ta} be a non-empty finite set of texts. Likewise,
let X = {k4,...,ka} be a non-empty finite set of keyterms, i.e.,
concepts describing the contents of these texts. The set of texts
T and the set of keyterms /C are related through a binary relation
R C T x K. An association rule is taken to be an implication
of the form B = H where B stands for body or antecedent, and
H for head or consequent with BC K, HC K and BNH = 0. Let



B = {k1,...,kp} be the set of keyterms of the body of an associa-
tion rule r; and H = {kp41,...,Kkq} be the set of terms of the head
of r;. B = H means that all the texts in 7 containing the keyterms
ki, ko, ..., kp also contain the keyterms kpy1, kpt2, ..., kq With a
probability P. The support of r; is the number of texts containing
the keyterms in BUH = {ki,...,kp,...,kq}). The confidence of
r; is the ratio of the number of texts containing the keyterm set
BUH and the number of texts containing B ({ki,...,kp}). This
ratio is interpreted as the conditional probability P(H|B). Support and
confidence are two quality measures attached to the association rules
[1]. Two user-defined thresholds o for minimal support and o for
minimal confidence are used to constrain the process of association
rule mining.

We want an association rule to conform to a model provided that
the concepts of B and H are adjacent concepts in the considered
model. For example, the concepts apple and fruit are adjacent con-
cepts in an ontology that relies on the hypernym-hyponym relation-
ship. Thus, the rule "apple” = "fruit” is a strong candidate for re-
jection because it is strictly taxonomic. Conversely, we would like to
keep the rule "cherry pie” = “chocolate”, "butter”. This rule ex-
presses an interesting combination of “cherry pie”, ”chocolate” and
“butter” that is not taxonomic.

3 MODELS

Models represent the knowledge that is used for selecting associa-
tion rules. Seen from a formal point of view, we specify models of a
domain (e.g., ontologies) by using relational structures (e.g., [11], p.
8). Networks of concepts (e.g., hierarchies, ontologies, meronymies,
semantic networks) can be redescribed as relational structures. A
structure consists of the following ingredients: (i) a non-empty set
of items or concepts called the universe or domain of the structure,
(i) various operations on the universe, and (iii) various relations on
the universe. The operations are optional [3]. A structure made up
only of a universe and various relations is usually called a relational
structure, which can be specified as follows. Let C' = {ci, ..., cu }
be a non-empty finite set of concepts, and let R = {Ru, ..., R, } be
non-empty finite set of relations, then RS symbolises the set of pairs
in C x C for which the relation R; holds. Thus, a relational structure
is made up of the set of pairs RS together with the set of concepts
C.Fori € {1, ..., n} the n relational structures are expressed by
(C, RY). Whenever all the RE fori € {1, ..., n} are defined on
C, we simply write (C, R). If a relational structure (C, R) is used
to give a probabilistic account of association rules, we will refer to it
as a model M.

On the one hand, we have to distinguish between the set of con-
cepts C that is used to define a model and the set of keyterms K the
concepts of which are used in association rules. This is necessary
since we can not rule out the possibility that unsuitable models are
used to explain rules. On the other hand, we have to specify a match
between a rule r; and a model. Let the set of concepts common to a
rule r; and a model M be denoted by Z;. Then, a rule r; matches a
model M if Vk; a keyterm of a rule r; 3¢ € C such that Z; # 0
with Z; = {(kl = Cl), ey (k,'q = Cu)}.

4 MODELS AS PROBABILITY
DISTRIBUTIONS

We spell out the probabilistic framework that is used for knowledge-
based selection of association rules. This is achieved by calculating
the maximum likelihood score P(r;|M), i.e., the probability of an

association rule r; given a model M. To specify P(r;|M) we have
to define a probability distribution P over the concepts of the model
considered. In so doing, we make use of the spreading activation the-
ory [4] cast in probabilistic terms. Defining a probability distribution
over the concepts of a model M consists of three basic steps:

I. Calculating Minimal Path Lengths. The probability distribution
over the concepts of a model is calculated by using the minimal path
that has to be traversed within a model M in order to connect the
keyterms of B and the keyterms of H of a rule ;. This is only possible
if the concepts of the model M can be related to the concepts of a rule
r;. Thus, CNK # 0. If there are several alternative paths, the shortest
one is chosen. A failure to find a path that connects the concepts of
B and H within a model M is denoted by a path length of 0. The
length of a path between the concepts ¢, and ¢, within a model M
is denoted by £(cy, ¢v). Accordingly, min(c,, ¢y ) is used to refer to
the minimal path length between a pair of concepts of B and H. The
expression |(cy, ¢y )| is used to refer to the number of paths that relate
¢, to all concepts in C and thus in M. Hence, (¢4, ¢y) C C x C for
which the relation R holds. If we want to express that the transition
of two concepts ¢, and ¢, of a model is used to calculate what is
called the likelihood of a specific association rule r;, we indicate this
by writing ¢, and ¢,

Il. Calculating the Decay Rate Attached to the Minimal Path
Lengths. Let us consider the situation that there is in fact a path be-
tween ¢,, and ¢, via a model M. A low score will then be assigned
to the transition and thus to the rule if the path is long and vice versa.
The same can be expressed in terms of the theory of spreading acti-
vation [4]. Then, we say that there is a monotonic decay of activation
among the concepts of a model. Using more formal expressions, this
is specified by introducing a function § with § : IN — IR. The func-
tion ¢ is a weighting mechanism that punishes long paths between a
concept ¢,, € Band ¢, € Hof amodel M. It is calculated by using
the reciprocal of the length of a path between ¢, and ¢, such that
§ =1/l(cu,cv).

I11. Deriving a Probability Distribution over Models. Probability
theory tells us that the scores (one-step transition probabilities) ob-
tained for a transition of a concept ¢, of B to each concept of M
should sum up to 1. What is needed is a variable to accomplish this
standardisation. We take & to denote this standardisation score. Note
that £ is calculated Ve € C. Intuitively, we say that as a result of the
&-standardisation models with a high number of transitions (branch-
ings) are punished, i.e., in general, their one-step transition probabil-
ities are low. By contrast, models with a low number of transitions
are rewarded, i.e., in general, their transition probabilities are high.
This is equivalent to the introduction of a weighting of path lengths
according to the branching of paths. To achieve the standardisation,
we multiply each reciprocal of a path length so that the resulting sum
will be 1. This standardisation score is is denoted by £. For each
¢y, We compute £ by adding up all scores for the reciprocal of path
lengths and calculating the reciprocal of the resulting sum, i.e., for
the concept ¢,

—1
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Putting all three building blocks for the definition of a probability
distribution over the concepts of a model M together, we are in a
position to state the probability distribution function Py, as:

Py(cu,co) =€ - 6 -

Based on equation 2, we may specify the probability of a rule r; given

min(cy, ¢v) )



amodel M. This score is what is called the likelihood of a rule, which
expresses the goodness of fit between an association rule r; and a
model M. Do the likelihood scores reflect correctly the goodness of
fit between a rule r; and a model M? To answer this question we
will consider two association rules r, and r, and the corresponding
likelihood scores given a model M. We will examine two situations:
(i) the length of paths to be traversed via a model M is the same
for the two rules considered. However, the number of transitions of
the concept ¢, is larger for rule r,, than for rule r,. (ii) the length of
paths to be traversed via a model is larger for rule r, than for rule r,.
However, the number of transitions is the same for the two considered
rules. Let M be a model and let there be a match between each of two
simple association rules r,, r, and the model M such that Z, # 0
and Z, # 0. This match simply indicates that the concepts of the
model and the concepts of the rule intersect. If £(cE, c8) = £(cZ,cl),
i.e. if we keep 4 and thus the lengths of paths constant (situation i),
then it follows from equation 2:

I(cu, o)l > |(ci, &b)| = P(rp|M) < P(rq|M).

5 LIKELIHOOD CALCULATION

We give now give a intuitive example that shows how models are
expressed in terms of transition probabilities. In this way, a probabil-
ity distribution over models is defined that is later used to calculate
the likelihood of association rules. A set of texts {¢1,...,ts} is de-
scribed by a set of keyterms {a, ..., e} in Figure 1 (a). A model of
a simple ontology is depicted in Figure 1 (b), that is read as follows:
"a” 1S-A "b”, "e” IS-A "c”, etc. The 1S-A relation is reflexive and
transitive but this is not indicated on the figure (for simplicity).

Text Keyterms
-------- >

m o @ (el
t2 {bce} \ N '
t3 {abce} N . |
ta {be} Lo o
ts {abce} Y y

ts {bce} @'"'""?@

Figurel. (a) The formal textual database — (b) A simple ontology.

Table 1. Figure 1 written in terms of transition probabilities

r a b c d e

022 022 011 022 022
005 030 030 0.5 0.30
010 010 060 0.10 o0.10
010 010 010 0.60 0.10
006 006 040 0.06 0.40

D00 oo
PRRPRPRRF(M

We will now address the question how the likelihood of associa-
tion rules is calculated. As shown by the example presented above,
we make use of equation 2 to describe a model in terms of transition
probabilities. In so doing, for every link that occurs in the graphical
representation of the model, we calculate the transition probabilities
of the concepts involved. We express the one-step transition proba-
bility of k, € B t0 k4, € H given a model M by Py, ,|M. The
probability distribution over all concepts of the ontology shown in
Figure 1 (b) leads us to a one-step transition probability matrix pre-
sented in Table 1. Pairs of concepts in Figure 1 (b) that are connected

by short paths, e.g., (b, ), are described by large transition probabil-
ities (0.30). ® Conversely, pairs of concepts connected by long paths,
e.g., (b, d), are associated with small transition probabilities (0.05). 4

Once we have calculated the probability distribution of a model
M, the determination of P(r;|M), i.e., the likelihood of a simple
association rule with |B| = |[H| = 1 proceeds by applying equation
2. Thus, given a probabilistic description of a model we find the
likelihood scores for simple association rules in the table of tran-
sition probabilities (cf. Table 1). For a rule: "b” — "e”, we have
that P(b => e|M) = 0.30. However, if we want to calculate the
likelihood of complex association rules with |B| or |H| > 1, we need
a more general procedure. We will now delineate this procedure for
calculating the likelihood of association rules. Note that this proce-
dure covers likelihood calculation of simple rules as a special case.
Since there is a number of transition probabilities involved in com-
plex association rules, we have to calculate an aggregate probability
score.

Calculating the likelihood of an association rule starts by the
Cartesian product B; x H; of the one-step transition probabilities of
the concepts involved in an association rule r;.

|Bs XHj |

P(Bs x H;)|M = H {Pklkp+1|Ma---;Pkpkq|M} 3
k=1

We then proceed from the set of |B; x H;| transition probabilities
to the aggregate likelihood score of an association rule. This proce-
dure rests on the assumption that all terms in an association rule r;
are of equal importance. The number of terms in a rule should not
impact the likelihood of a rule. For this reason, likelihood calcula-
tion is based on the geometric mean of the product of the |B; x H;|
transition probabilities. This is done by taking the |B; x H;|[** root
of the product of the single transition probabilities. Thus, the ag-
gregated likelihood of rule r; given model M that expands into

ki,..., kp = kpt1, ..., kq|M is calculated by:
|By XHy |
P(riM) = "M T APekpss M, -, Pigig[M} (4)
k=1

6 CLASSIFICATION
6.1 A knowledge-based classifier

A high likelihood of an association rule r; indicates that it conforms
to the model M. However, selection depends not only on the likeli-
hood of an association rule considered but also on the model applied.
By using both kinds of information a probabilistic binary classifier
for association rules is realised. In general, a classifier is defined as a
function f that maps an input to a class w; with j € {1,...,n}.
The input is usually an ordered n-tuple or vector of attributes. In
knowledge-based association rule extraction, the input to the clas-
sification task is an association rule r; and a model M both of which

3 To deal with the problem of a non-existing path between two concepts,
two strategies are used. In simple rules, the probability of 0 is associated
to a non-existing path. In complex rules, however, this strategy would turn
the aggregate score into 0. Hence, a "penalty score” is used that equals
to a minimal probability: Py(cy, cy) = !11? with n being the number of
concepts of M. In the example, the penalty score was used, and n = 5. For
(b,c), we have: £ = ((3x 1) + (2% é))71 =0.3and § = 1.

4 For (b, d): £ remains the same and § = .



are used to calculate the likelihood score P(r;|M). In addition, we
make use of a threshold ¢ to carry out a binary classification:

if P(ri|M) >t

1
f(ri,M)z{ 0 if P(rs|M) <t ©

6.2 Classification of association rules

This section presents rule selection for the formal example delineated
in Figure 1. Twenty association rules {ri,...,rs0} are extracted
with minimal support: os = 1 and minimal confidence: o. = 0.1 (cf.
Table 2). For the rule 77, we have: P("b” = "a” 7" 7e”|M) =
(Par(b,a) x Par(b,c) x Pu(b,e))’® = (0.05 x 0.3 x 0.3)/3 =
0.165. In order to perform an evaluation of our methodology, we
classified the rules into eight classes shown in table 2. The left part
contains taxonomic rules (T-rules), and the right part contains non-
taxonomic rules (—T-rules) i.e., rules involving at least one path that
does not exist in the ontology used. The line blocks group rules ac-
cording to their structures, i.e., the number of keyterms (one keyterm
or more) involved in B and H: line 1 are (1,1) rules; line 2 are (1, n),
line 3 are (n, 1), and line 4 are (n,m) withn,m > 1.

Table2. Likelihood scores for association rules

# T n/d  score # =T n/d  score
r1 b=e 0/1 0300 | 73 e=b 1/0  0.000
) a=cC 0/0 0.111 T4 c=a 1/0  0.000
r5 b=-c.e 0/2 0.300
T6 a=>b,c,e 0/2 0.176 T11
7 b=ace 12 0.165 | 712
8 e=b,c 1/1 0.163 | ris
r9 a=-c,d 0/1 0157 | 714
rio e=sabc 2/1 0121
T15 b,c=¢e 1/1  0.173 T16
ri7  ab=ce 03 0217 | ri9
18 ae=bhc 1/2 0.160 | 720

c=b,e 2/0  0.100
c=a,d 2/0  0.100
d=a,c 2/0  0.100
c=-ab,e 3/0 0.100

ce=b 2/0  0.081
bc=ae 3/1 0.110
ce=ab 4/0 0.081

There exists a likelihood threshold ¢ = 0.110 that separates the (T)-
rules (P(r;|M) > 0.110) from the (—T)-rules (P(r;|M) < 0.110).
In T(1,1), both rules are taxonomic. According to the likelihood
score definition, the longer the path is (length is 1 for 1 and 2 for
r2), the lower the score is (score(rz2) < score(ri)). Hence, ro is
less trivial than r; (following paragraph 4, property Il). There are
three taxonomic paths from ”a” to ”c” (through ”b”, ”e” or b / €”).
The path (a/ b /e/c) is discarded as it is the longest path. "b” is a
two-branches concept while ”e” is only a one-branch concept. Thus,
the likelihood score for (a / b / c) is kept instead of the (a /e / c)
score as it is lower (illustrating property I11). Conversely, in =T(1, 1)
there is no path from “e” to ”b” (in r3) or from ”c” to ”a” (in r4) then
score(rs) = score(rs) = 0.

In the T-rules of line-blocks 2, 3, and 4, we can underline two
principles: (i) the less non-taxonomic paths between the keyterm in
B and the keyterm set in H are, the higher the likelihood score is; (ii)
the more direct paths there are, the higher the score is. We indicate
this in the n/d column of Table 2. For example in the rule r13, 2/1
means that two paths of the association rule are non-taxonomic and
there is 1 direct path linking concepts of B and H.

7 APPLICATION ON TEXTUAL DATA

We will now describe knowledge-based rule selection carried out on
a large basis of association rules. The rules were extracted from bib-
liographical notes of scientific articles on molecular biology. They

provided information on contextual data and meta-data encoded in
XML elements, e.g., title, author(s), date, publication status (yes,no),
keyterms (cf. Figure 2). Overall, our corpus has been composed of a
set of 1, 361 texts of about 240, 000 words (1.6 MBytes). The texts
were indexed by || = 632 keyterms.

Text: #391

Title Sequencing of gyrase and topoisomerase |V quinolone-resistance-
determining regions of Chlamydiatrachomatisand characterization of quinolone-
resistant mutants obtained In vitro.

Authors. Dessus-Babus-S; Bebear-CM; Charron-A; Bebear-C; de-Barbeyrac-B
Abstract: The L2 referencestrain of Chlamydiatrachomatiswas exposed to subin-
hibitory concentrations of ofbxacin and sparfbxacin to select fuoroguinolone-
resistant mutants. In this study, two resistant strainswere isol ated after four rounds
of selection|[ ... ] A point mutation was found in the gyrA quinolone-resistance-
determining region of both resistant strains, leading to a Ser83- - >1le substitution
(Escherichia coli numbering) in the corresponding protein. The gyrB, parC, and
parE of theresistant strainswereidentical to those of thereferencestrain. Thesere-
sults suggest that in C. trachomatis, DNA gyraseisthe primary target of ofbxacin
and sparfbxacin.

Keyterms: "characterization” "chlamydia trachomatis’ "determine region” "dna’
"escherichiacoli” "gyragene” "gyrase” "gyrb gene” "mutation” "oflbxacin” "parc
gene” "pare gene” "point mutation” "protein” "quinol one” "sparfloxacin” "substi-
tution” "topoi somerase”

Figure 2. Example of abibliographical note (abbreviated).

Initially, two textual fields were extracted: the title and the ab-
stract. Next was an automatic indexing process required for extract-
ing linguistically well-formed keyterms from the texts by using the
FASTR tool [10]. Each text could then be represented by a set of
keyterms, and text mining according to the classical knowledge dis-
covery schema became feasible. Extraction of association rules was
achieved by making use of the Close algorithm [13]. Close is based
on the closed frequent itemset levelwise search in a boolean table de-
scribing a Cartesian product 7 x K. The algorithm starts from the
shortest frequent itemset closures and increments efficiently the cal-
culation of larger frequent itemset closures in £C. An itemset is closed
if it is the maximal set of keyterms shared by a set of texts. An item-
set is frequent if it appears more than o,-times. Once the closures
have been computed, the association rules are derived. We obtained
347 association rules with os = 10 and o = 0.8.

Association rule selection is conducted by following the
knowledge-based approach described. The ontology used as a model
M in knowledge-based rule selection is the UMLS metathesaurus
[17]. It contains about 125,000 concepts from about 100 medical
and biological thesauri. While the UMLS metathesaurus provides 11
relationships, we restrict our analysis to the 1S-A relation ("PAR”:
parent). Note that the model M derived from the UMLS metathe-
saurus covers K only partially. Overall, 438 concepts of M are iden-
tical to those in K (= 70% of the keyterms). Thus, we have an in-
complete model. Among the 347 association rules, there are 136
(=~ 40%) that have a likelihood # 0 (all were complex rules). We
have discarded them, and the remaining set is made up of 211 asso-
ciation rules (60%). Among them, there are 46 simple rules and 165
complex rules.

To evaluate the outcome of knowledge based rule selection we
describe the behaviour of the binary classifier in terms of the sig-
nal detection theory. In a binary classification there are four possible
outcomes: true positives, false positives, (hit rate), false negatives
and true negatives (correct rejections). Remember that we pursue a
rejection-oriented approach. Thus, non-rejected rules (positives) are
not considered to be exclusively correct positives. When evaluating
the outcome of knowledge-based rule selection we address the fol-
lowing questions.

1. Overall rejection rate. First, we have to consider the overall
rejection rate. Only if the rate of rejected association rules is suffi-



ciently high, then it makes sense to continue the evaluation of as-
sociation rule selection. If there is no reduction achieved, then the
shrinkage of the rule set failed. In our data set, we achieved a rejec-
tion rate of 40%, viz., 136 association rules were rejected since their
likelihood score indicated that they were taxonomic rules.

2. Impact of incomplete models on the process of rule selection.
The power of models to reject rules (e.g., because they are taxo-
nomic) is hampered by incomplete models, viz., models that do not
cover all the concepts used by association rules. This means, that in-
complete models lead to an increased rate of false positives that pass
unnoticed. In fact, among the two types of errors, that may occur in
this type of classification (false positives, false negatives) the propor-
tion of the former was clearly higher (45%) than that of the latter
(10%).

3. Validation by expert (analyst) ratings. Among the 136 rules that
have been rejected on the basis of knowledge-based rule selection
there have been 122 true negatives (correct rejections) (90%) and
14 false negatives (10%). Among the set of 211 association rules
that were not rejected, there were 115 true positives (54%) and 96
false positives (45%). We used the 2 x 2 schema of signal detec-
tion theory to compare the expected frequencies (random distribu-
tion) with those obtained by the binary classifier. Here, a significant
deviation became obvious (y? = 87.47, df = 3, p < 0.0001, two-
tailed). This result is mainly due to the high score obtained for cor-
rect rejections. As expected, results for positives do not deviate from
those of a random distribution. In sum, according to our expectation
knowledge based selection of association rules discriminated highly
above chance level on the set of negatives.

8 RELATED WORK

Most of the work expended to address the problem of association rule
selection made use of statistical approaches without incorporating
knowledge. An exception is the work of Basu and his co-researchers
[2] who were also following a knowledge-based approach to reduce
the overall set of rules extracted. Instead of using probabilistic frame-
work, their work is based on a self-defined measure of semantic sim-
ilarity between words. The main difference between our approach
and the work of Basu and his colleagues relates to the possibilities
for extensions. While similarity based approaches are oblivious of
base rates, their inclusion is in fact a promising extension of like-
lihood based approaches once word statistics are available and in-
cluded into text mining. Quite a different approach to improve the
quality of rule selection follows generalised association rules mining
[15, 8, 9], which proceeds by using terms that are part of different
concept levels of an ontology. When knowing the ancestors of the
terms some specific criteria are applied to constrain the rule mining
process (e.g., disallowing rules that use both a term and its ancestor).
Still, this process remains computationally expensive since using an-
cestors of each term in a preprocessing step or during the mining
steps leads to an even greater number of rules. Similar work that used
ontological knowledge, for term classification purposes, is presented
in [14].

9 CONCLUSION AND FUTURE WORKS

Rejection-based selection of association rules provides new possibil-
ities to improve rule mining by integrating knowledge. The proba-
bilistic foundations of this approach allow the data mining expert to
profit from a broad range of methods drawn from probability theory

(e.g., Bayesian techniques). To fully exploit the probabilistic frame-
work for rule selection we plan to extend our work in two direc-
tions. First, we will integrate base rates of concepts (e.g., based on
word statistics) that provide a weighting schema for the likelihoods
already used. By pursuing a Bayesian framework that makes use of
priors the usage of word statistics become feasible. Second, the ex-
amples presented in the paper made only use of simple ontologies
that were built upon the hypernym-hyponym relationship. However,
more complex ontologies may also be processed (e.g., incorporating
causal relationships).
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