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Abstract. Formalising Architectural styles has been claimed as making variations impossible.
We demonstrate that in the contrary, formalising enables to vary a style and to control that
all the variations are still compatible with the style. To do so, we formalise the Pipe and Filter
style together with several variations. We then show how to use these variations to develop the
specification of a convolution product. The different solutions developed are proved equivalent
and compared. The formal specification language LOTOS will be used as Architectural De-
scription Language. The comparisons and other validations will be performed using the LOTOS
environment CADP.
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1 Introduction

The specification of software architecture is now recognised as a separate step in software life
cycle. Architectural styles and patterns are techniques for identifying, describing and analysing
commonly occurring architectural problems and solutions [Me98]. They characterise designs
in terms of the system components and the connectors that enable communication between
components [AAG93].

An arising problem is how to represent styles in such a way that unambiguous criteria
can be stated to decide whether a given design conforms to some style and how a style
representation can help to develop concrete architectures.

Buschmann et al. [BMR196] claim formal methods do not apply to patterns, because
“Formalisms ...tend to describe particular issues very precisely, but do not allow for the
variation that is inherently embedded into every pattern”. Moreover, they remark that there
is no formalism “suitable for describing the benefits and liabilities of a pattern”.

In contrast to this opinion, we deem it to be worthwhile to attempt a formalisation of
design patterns and architectural styles for the following reasons:

— A formal description of architectural style clarifies the ambiguous points of the informal
description improving their comprehensibility;

— Designers are provided with criteria to decide on the applicability of a certain pattern
or style. For example, the definition of relations between patterns such as specialisa-
tion [LLM98] enable to compare them;



— Instantiation of styles is made easier by making explicit the parameters or characteristics
of the style;

— Concrete architectures may be subject to proofs, analyses, and other forms of validation,
e.g., animation

— The development of tools is facilitated by formal descriptions [EGY97].

Moreover, a formal description of patterns and styles does not prevent their variation and
evolution. We demonstrate it by specifying variations on the Pipe and Filter style.

Informal circle-and-line drawings have shown their limitations and today, formal languages
are proposed to represent software architectures. New languages for architectural descriptions
have been developed, but they are still in a maturing phase, and few are provided with
tools [Cle96].

Instead of creating a new ADL (Architectural Description Language) [SG96], we use the
formal description language LOTOS [BB87]. In [HL97] and [Tur96], the authors have demon-
strated that LOTOS is a suitable language to express architectural designs and in particular
to establish a formal semantics of the communication between the components constituting
a design pattern. In addition, data transformations can be specified as LOTOS abstract data
types operations. Besides providing a formal semantics, the use of LOTOS has the advantage
that existing tools, such as CADP (Caesar/Aldebaran Distribution Package) [FGM™92], can
be employed to analyse and animate instances of patterns. Furthermore, LOTOS is an ISO
standard such that a widespread familiarity with the language can be assumed.

In this paper we present an approach to express architectural styles using LOTOS pat-
terns. A style is formalised by general patterns describing the properties of its components,
connectors and configuration. In addition, some specific patterns are given as variations on
the style. The characteristics of a style are to be considered as its parameters. They are the
typed and constrained variables introduced in the patterns. We show that specifying a system
according to a style becomes straightforward. It consists in instantiating correctly the charac-
teristics. Our approach is illustrated by the formalisation of the Pipe&Filter style. This style
and its variations is then used to develop different equivalent specifications of a convolution
product. These specifications are analysed and compared one each other using the tool CADP.

In Section 2, the general approach followed to formalise architectural styles is presented.
The approach is illustrated in Section 3 by characterising the architectural style Pipe&Filter.
Several variations of filters and pipes are considered in Section 3.4. In Section 4, we present
the case study of the convolution product. The concluding section discusses our approach in
the context of related work. A summary of the LOTOS used in this paper is presented in the
appendix.

2 Formalising Architectural Styles

2.1 What is in a style ?

Following the definition of the architectural building constructs [NR97], a style is described in
four parts: (i) components and connectors, (ii) architectural configuration, (iii) architectural
constraints and (iv) components and connectors variants.

— Components are units of computation or data stores. Their interface is a set of interaction
points with either connectors or the environment.



— Connectors are architectural building blocks used to model interactions between compo-
nents. The interface of a connector specifies the interaction points with the components
attached to it.

— An architectural configuration is a connected graph of components and connectors describ-
ing the architectural structure. These informations are needed to ensure that components
are correctly connected, that their interfaces match, that the connectors enable proper
communications, and that their combined semantics results in the desired behaviour.

— Architectural constraints are the properties a specification must verify in order to be of
the style. These constraints can be checked by any specification, without any indication
of its development process.

— Variations of components and connectors describe some specific solutions.

The characteristics of the style describe its attributes. They can be considered as its param-
eters: what has to be given by the specifier in order to define an architecture. Characteristics
are given for the components, the connectors and the configuration.

2.2 Architectural Styles in LOTOS

In this paper, we use the formal description language LOTOS [BB87] and its tool package
CADP (Caesar/Aldebaran Distribution Package) [FGM*92]. LOTOS [BB87,LOT87] is a for-
mal specification language developed to specify open distributed systems. LOTOS has two
separated parts:

— the control part based on the process algebra approach for concurrency, combining features
of CCS[Mil80] and CSP[Hoa85]. The semantics is defined in terms of labelled transitions
systems.

— the data part for the description of data structures using algebraic abstract data types [GHT7S].
The ACT-One specification language [EM85] is used with conditional equations and an
initial semantics. Data types are used for describing process parameters and values ex-
changed by the processes.

In the appendix, a summary of LOTOS used in this paper is presented.

A design description expressed in LOTOS consists of two parts. The global behaviour part
describes the overall behaviour of the design, i.e., the configuration. The local definitions part
contains the definition of the processes involved in the behaviour part and the definitions of
the algebraic abstract data types introduced. The syntactic structure of a design description
is as follows:

behavior

behav_expr
where

local_def list

The basic ideas underlying our formalisation of software architecture descriptions are:

— The components and the connectors of an architecture are modelled as LOTOS processes
and the requirements corresponding to a style will be defined by LOTOS patterns with
variables;

— The architectural configuration of a style will defined by a LOTOS communication pattern;



Fig. 1. A Pipe&Filter Architecture

— The characteristics of the style will be the list of variables introduced in the patterns.
These variables are typed and constrained. The types represent parts of the specification.
They are the ones of the nodes of the abstract syntax tree representing the specification.
In the following, the variables will be written in italics.

— To obtain a concrete architecture, the specifier will have to give a value to these variables.

Using patterns present the advantage of providing guidelines to develop a system, ensuring
that it will conform by construction to a given style.

3 Formalising the Pipe&Filter Style

The characteristics of Pipe&Filter style are the following [GS93]:

“In a pipe and filter style each component has a set of inputs and a set of outputs.
A component reads streams of data on its inputs and produces streams of data on its
outputs, [...] Components are termed “filters”. The connectors of this style serve as
conduits for the streams, transmitting outputs of one filter to inputs of another. Hence
connectors are termed “pipes”. [...] filters must be independent entities: in particular,
they should not share state with other filters. ”

Figure 1 shows an example of a Pipe&Filter architecture. A filter (such as Filter_3) may
have several incoming and several outgoing pipes. Cycles are allowed.

3.1 Components and Connectors

All components are called Filters and all the connectors Pipes.

Filters A filter processes a local and incremental data transformation on the data received
on its input gates and sends the results on its output gates. These results will be sent either to
other filters via pipes or to the environment. A filter will perform three operations: receive the
data on its input gates, compute an operation which will result in a several results that will
be sent onto the output gates. A filter may have a local memory or a state. It is characterised
by:

— the names of all its input and output gates gate 1ist_IN and gate list_OUT,



— for each gate, the data type T: of the values received or sent there,
— the data type T of its local state and
— the operation computed F whose signature is
F: T, T.in_1, ...T_inn — < T, T out_1, ...T out_m >
— the predicates predjjc1..m used as guard for the results emission.

Its behaviour can be described by the following minimal and abstract process:

process FILTER [gate list_IN, gate_list_OUT] (val: T) : noexit :=

( gate IN_1 ? vl : T 4n_1; exit(vl, any T_in_2, ... any T in_n)
11
Il gateIN.n ? vn : T in_n; exit(any T 4n_1, ... any T_4n_n-1, vn))
>> accept vl: T_4n_1, ... vn: T_in_n in
exit (F(val, vi, ... vn))
>> accept val’: T, wi: Tout_1, ... wm: T_out_m in

( [pred1] -> ( gate OUT_1 ! wl ; exit ) []1 [not(pred1)] -> exit
11
Il [predm] -> ( gate OUT_1 ! wl ; exit ) [1 [not(predm)] -> exit )
>> FILTER [gate_list_IN, gate list_OUT] (val’)

endproc

where
gate_list_IN = gate_IN_1,...gate_IN_n
gate_list_OUT = gate OUT_1,...gate OUT_m
Let us note that the behaviour can be decomposed into three successive behaviours:
— A data reception behaviour on the n input gates in parallel and independently:

data_reception_behaviour =
( gate IN.1 7 vl : T_4n_1; exit(vl, any T_in_2, ... any T in_n)
11

Il gateIN.n ? vn : T_din_n; exit(any T in_1, ... any T 4n_n-1, vn))
— A computation behaviour where the operation F' is called:

computation_behaviour includes
F(val, v1, ... vn)

— A result transmission behaviour on the m output gates in parallel and independently:
result_transmission_behaviour =
[pred1] -> ( gate OUT_1 ! wl ; exit ) [] [not(predi)] -> exit
[ ...
[predm] -> ( gate OUT_m ! wm ; exit ) [1 [not(predm)] -> exit

Pipes A pipe has two gates: an input gate where it receives a stream of data and an out-
put gate where it sends it out, without any transformation and in the same order. A pipe is
characterised by the names of both its input and output gates gate I¥ and gate 0UT and the
data type T of the values received and sent. Its behaviour can be described by the following
minimal and abstract process:

process PIPE [gate_IN, gate OUT]: noexit :=
gate_ IN 7 x : T;

gate_ OUT ' x ;
PIPE [gate_IN, gate OUT]
endproc




3.2 Architectural Configuration

A system of Pipe&Filter style is characterised by the following attributes:

the list of the names of the p filters (FILTER %), . . p and for each filter, its effective gates

gate list IN_i and gate list_OUT i ;

— for each filter FILTER 4, its characteristics as seen in section 3.1;

— the list of the names of the ¢ pipes (PIPE_ j)jE 1..q and for each pipe, its effective gates
gate IN_j and gate OUT j;

— for each pipe PIPE j, its characteristics as seen in section 3.1;

— the list of the system external gates Ezt Gate list.

The global configuration can be described by the following minimal and abstract behaviour
expression:

hide all_gates_IN, all_gates_OUT in
« FILTER_1 [gate_list_IN_1, gate_list_OUT_1] (val_1: T_1)
...
||| FILTER_p [gate list IN.p, gate_list OUT_p] (val p: T p))
I[ all_gates_IN, all_gates OUT ]|
( PIPE 1 [gate_IN_1, gate OUT_1]
1
Il PIPE q [gate IN.q, gate OUT q]))

where
all_gates_IN, all_gates OUT denote the communicating gates between the filters and the pipes.
Each pipe input gate is a filter output gate, and each pipe output gate is a filter input gate:
all_gates_IN = nglgate_IN_i
all_gates_OUT = nglgate_UUT_i
Vi€ 1..q A i€ 1.pe gate INj € gate list OUT i
Vi€ 1..q Vi€ 1..pegate OUT_jE gate_list_IN 3
In addition, the configuration must satisfy the following constraints:

1. The system communicates with its environment via the filters (the pipes do not communi-
cate with the environment). As a consequence, the external gate list is equal to the union
of filters gates not being a pipe gate):

Evt_Gate list= (UY_, gate tist.INi U UL_| gate list_0UT i)
\ (Ui, gaterwj U UL, gate 0T j)

2. Filters do not communicate directly, they do not share gates :

Vi, i' € 1.p : i # i’ = (gate_list IN_i U gate_list OUT-3) N (gate_list IN_i’U gate_list OUTi’) = &

3. Pipes do not communicate directly, they do not share gates :

Vij,j' €1..q:j #j = {gate_IN_j, gate_OUT_j} N {gate_IN_j’, gate_OUT-5’} = &

3.3 Architectural Constraints

The architectural constraints of the style Pipe&Filter describe properties to be satisfied by
any system in order to be of the Pipe&Filter style. They are formalised with first order logic
formulas. The considered system is a LOTOS specification neither defined with the above
patterns nor by instantiation of the above variables. But the properties to be proved are the
same as the ones constraining the characteristic variables.



The system is denoted by two variables: beh representing the global behaviour and tocal_def
representing the definition of the processes introduced in veh. The constraints will concern the
whole specification or just part of it. We suppose that the following functions are defined !.

Ezt_Gates: BEHAVIOR — GATE_LIST List of the external gates (not hidden)
of the behaviour

Proc_Calls: BEHAVIOR — PROC_CALL_LIST |List of the process call expressions in a
behaviour

Name: PROC_CALL — IDENT Name of the process called in a process
call expression

Gates: PROC_CALL — GATE_LIST Gates mentioned in a process call ex-
pression

Proc_Def: LOCAL_DEF,IDENT — PROC_DEF Returns the definition of a named pro-
cess from the local definitions

The types represent parts of the specification. They are the ones of the nodes of the abstract
syntax tree representing the specification. In addition, we suppose one attribute Archi asso-
ciated to each process definition. For example, a process definition denoted by the variable f
representing a filter will have as Archi attribute Filter, denoted: Archi(f) = Filter. Finally
and to simplify the notation, we define the sets filters and pipes denoting the filters and the
pipes of a system as follows:

filters(beh, local_def )= {f € Proc_Calls(beh) |

Archi(Proc_Def (local_def , Name(f))) = Filter}
pipes(beh, local_def) = {p € Proc_Calls(beh) |

Archi(Proc_Def (local_def , Name(p))) = Pipe}

Constraints:

1. The system communicates with its environment via the filters (the pipes do not commu-
nicate with the environment):
V p € pipes(beh,local_def) o Gates(p) N Ext_Gates(beh) = &

2. Data is carried between filters only via pipes (filters do not share gates):
Vf1,f2 € filters(beh,local_def) o Gates(f1) N Gates(f2) = &

3. Each pipe has two gates. It links an output gate of a filter to an input gate of another
filter:
Vp € pipes(beh, local—def) 3 Gin, Jout ® Gates(p) = (gin7 gout) A

(3 fin, fout € filters(beh,local_def) ® gin € Gates(fin) A gour € Gates(four) N fin # fout)
4. All the pipes are independent one each other (they do not share gates).

V pl,p2 € pipes(beh, local_def ) o Gates(pl) N Gates(p2) = &

5. All filters must conform to the behaviour detailed in section 3.1 being equivalent with
respect to the safety equivalence [FM91] to the instantiated pattern defining the filters
behaviour.

6. All pipes must conform to the behaviour detailed in section 3.1 being equivalent with
respect to the safety equivalence [FM91] to the instantiated pattern defining the pipes
behaviour.

3.4 Variations on the Pipe&Filter Style

The variations on filters and pipes represent some specific solutions. They are equivalent with
respect to the safety equivalence to the patterns given in section 3.1.

! for example on the abstract syntax tree of the specification.



Variations on Pipes The general pipe pattern describes the expected pipe behaviour: to
receive a message on its input gate and to send it on its output gate. It is possible to decouple
these two behaviours, for example to enable several successive receptions before a sending.
To do so, the pipe must have a local buffer, managed as a file, to store the received messages
waiting to be output. This buffer can either be bounded or not. To model such pipes, we define
algebraically the abstract data types BUF and BOUNDED_BUF provided with the operations init,
put, head, tail, empty and full. The definitions of these types are given in Table 1 and 2.

A bounded buffer is composed of an integer, representing its size, and an unbounded buffer
containing the elements. Therefore, most of its operations can be described as extensions
of the unbounded buffer operations. It is the case for put, tail, size, head, and empty. To
define them, the buffer part is taken by the projection operation: buf_of_bounded and the op-
eration of an unbounded buffer is applied to it. For example, the operation empty is defined as
follows: empty (A_bounded) = empty(buf_of bounded(A_bounded))
where A_bounded is a bounded buffer. This equation says that a bounded buffer is empty if
its buffer is empty.

We obtain two pipe variations by instantiating them with different buffer types. Their
behaviours correspond to the following patterns:

Bounded Pipe

process PIPE [gate_IN, gate_OUT] ( A Bounded: BOUNDED_BUF ) : noexit:=
[not (full( A_Bounded ))] ->
gate IN 7 x: T ;
PIPE [gate IN, gate_ OUT] (put( x, A Bounded ))
1
[not (empty( A Bounded ))] ->
gate_OUT ! head( A_Bounded ) ;
PIPE [gate_IN, gate_OUT] (tail( A_Bounded ))
endproc

Unbounded Pipe

process PIPE [gate_IN, gate_OUT] ( An_Unbounded: BUF ) : noexit :=
gate IN 7 x: T ;
PIPE [gate_IN, gate_OUT] (put( x, An Unbounded ))

|
[not (empty( An_Unbounded ))] ->

gate_OUT ! head( An Unbounded ) ;
PIPE [gate_IN, gate_OUT] (tail( An_Unbounded ))

endproc

Variations on Filters As seen in the general pattern, a filter performs three behaviours: a
data reception, a computation and a result transmission. These behaviours can be executed
either sequentially as in the general pattern, or in parallel: for example, the filter could start
receiving new inputs before having terminated its computation. We will call this behaviour,
a non-blocking filter. In this case, the three behaviours are composed in parallel, syn-
chronising on two internal (and hidden) gates int_gate: and int_gate2. The reception process
synchronises its inputs with the computation process on int_gate: whereas the computation
process synchronises its results with the transmission process on int_gate2. In contrast, the



Table 1. ADT definition of Unbounded buffer

Unbounded Buffer

library X_BOOLEAN, NATURAL, EXP endlib
type SYMB_EXP_UNBOUNDED_BUFFER is BOOLEAN, EXP, NATURAL

sorts BUF

opns
init : -> BUF
put : EXP, BUF -> BUF
tail : BUF -> BUF
head : BUF -> EXP
empty : BUF -> BOOL
size : BUF -> NAT
_nequal_ : BUF, BUF -> BOOL
_equal_ : BUF, BUF -> BOOL

eqns forall el,e2:EXP, An Unboundedl, An Unbounded2:BUF
ofsort BOOL
empty (init) = true;
empty (put (el, An Unboundedl)) = false;
(An_Unboundedl nequal An Unbounded2) = not(An Unboundedl equal An Unbounded2);
init equal init = true ;
init equal put(el, An Unboundedl) = false ;
el ne e2 => put(el, An Unboundedl) equal put(e2, An Unbounded2) = false ;
put(el, An Unboundedl) equal put(el, An _Unbounded2)
= ( An _Unboundedl equal An Unbounded2 ) ;

(An_Unboundedl equal An Unbounded2) = (An Unbounded2 equal An Unboundedl)
ofsort BUF
tail(init) = init ;
tail(put(el, init)) = init ;
An_Unboundedl nequal init =>
tail(put(el, An_Unboundedl))= put(el, tail(An_Unboundedl));
ofsort NAT
size(init) = 0 ;
size(put(el, An Unboundedl)) = Succ(size(An_Unboundedl))

ofsort EXP
head (put (el,init)) = el;
head(init) = 0 ;

An Unboundedl nequal init =>
head(put(el, An Unboundedl)) = head(An Unboundedl)
endtype




Table 2. ADT definition of bounded buffer

Bounded Buffer

library X_BOOLEAN, NATURAL, EXP endlib

type SYMB_EXP_BOUNDED_BUFFER is BOOLEAN, EXP, NATURAL,
SYMB_EXP_UNBOUNDED_BUFFER

sorts BOUNDED_BUF

opns
init : NAT, BUF -> BOUNDED_BUF
put : EXP, BOUNDED_BUF -> BOUNDED_BUF
tail : BOUNDED_BUF -> BOUNDED_BUF
head : BOUNDED_BUF -> EXP
empty : BOUNDED_BUF -> BOOL
bound : BOUNDED_BUF -> NAT
size : BOUNDED_BUF -> NAT
_nequal_ : BOUNDED_BUF, BOUNDED_BUF -> BOOL
_equal_ : BOUNDED_BUF, BOUNDED_BUF -> BOOL
full : BOUNDED_BUF -> BOOL
buf_of_bounded : BOUNDED_BUF -> BUF

eqns forall el:EXP, An Unbounded:BUF, n:NAT, A Boundedl, A Bounded2: BOUNDED_BUF
ofsort BOOL
(A_Boundedl nequal A Bounded2) = not(A_Boundedl equal A_Bounded2) ;

(A_Boundedl equal A Bounded2)
= (buf_of_bounded (A_Boundedl) equal buf_of_bounded(A_Bounded2)) ;

full (A_Bounded1l) = (bound(A_Boundedl) eq size(A_Boundedl) ) ;
empty (A_Boundedl) = empty(buf_of_bounded (A_Boundedl) )

ofsort BUF
buf_of_bounded(init (n, An_Unbounded)) = An Unbounded

ofsort BOUNDED_BUF
tail (A_Bounded1l) = init(bound(A_Boundedl), tail (buf_of_bounded(A_Boundedl) ) ) ;

(bound (A_Bounded1l) gt size(A_Boundedl)) =>
put(el,A Boundedl)= init(bound(A_Boundedl) ,put(el,buf_of_bounded(A_Boundedl)));

(bound (A_Bounded1) le size(A_Boundedl)) => put(el,A Boundedl) = A Boundedl

ofsort NAT
bound( init(n, An Unbounded) ) =n ;
size (A_Boundedl) = size( buf_of_bounded (A_Boundedi) )

ofsort EXP
head (A_Bounded1)
endtype

head (buf_of_bounded (A_Bounded1))

10




general pattern filter given in section 3.1 will be called a blocking filter. Both patterns of
the non-blocking and the blocking filters are given below:

Non Blocking Filter

process FILTER [gate list_IN, gate_list_OUT] (val: T) : noexit :=
hide int_gatel,int_gate2 in
( Reception [gate list_IN, int_gatel]
|[int_gatel]]|
Computation [int_gatel, int_gate2]( val )
| [int_gate2]|
Transmission [gate_list_OUT,int_gate2] )
where
process Reception [gate_ list_IN, int_gatel] : noexit :=
data_reception_behaviour
>> accept vl: T_en_1,... vn: T_¢n_n in
( int_gatel !'vi ... lvn ;
Reception [gate list_IN, int_gatell])
endproc
process Computation [int_gatel,int_gate2] ( val: T ) : noexit :=
computation_behaviour
>> accept val’: T in
Computation [int_gatel,int_gate2] ( val’)

endproc
process Transmission [gate_list_OUT,int_gate2]: noexit :=
int_gate2 ?val’: T ?wl:T_out_1 , ... ?um:Tout_m ;

result_transmission_behaviour
>> Transmission [gate_list_OUT,int_gate2]
endproc
endproc

Blocking Filter

process FILTER [gate_list_IN, gate_list_OUT] (val: T) : noexit :=
Reception [gate_list_IN]

>> accept vi: T_4in_1,... vn: T_in_n in
(Computation ( val, vi, ... vn )
>> accept val’: T, wil: T out_1, ... wm: T_out_m in
(Transmission [gate_list_OUT]( wi, ... wm )
>> FILTER [gate_list_IN, gate_list_OUT] (val’) )
where
process Reception [gate list_IN]
: exit( val: T, vi: T en_1,... vn: T in_n ) :=
data_reception_behaviour
endproc
process Computation ( val: T, vi: T4n_1,... vn: T_in_n )
exit (val’: T, wi: Tout_1, ... wm: Tout_m ) :=
computation_behaviour
endproc
process Transmission [gate 1ist_OUT] ( wil: T out_1,... wm: T_out_m):
exit :=
result_transmission_behaviour
endproc
endproc

The three variables data_reception_behaviour, computation_behaviour and
result_transmission_behaviour denote the behaviours defined in section 3.1.

11



4 Case Study: a Convolution Product

A convolution product defines a sequence of values Y; by summing up the product of n values:

Wi, ---, W, with a sequence of values X;. In this example, we will just consider three values
(n = 3)
Yi= Y (Wj* Xitj-1) (1)
1<j<n

A systolic network [Kun82,Gar89] with three identical and connected cells running the same
algorithm can be used to solve this problem. As shown in Figure 2, a systolic network is
typically of Pipe&Filter style.

Fig. 2. Convolution product using systolic solution

Following a top-down approach, our development has three steps:

— step(i): identification of the interface of the system with its environment (instantiation of
Ezt_Gate_list) and type of the values exchanged with it.

— step(ii): identification of the components and connectors and for each of them definition of
their interface (instantiation of the list of filters names (FILTER 1 ); with their effective gates
gate list_IN.i and gate list OUT i, the data type T of the local state and the operation
computed F' and the list of pipes names (PIPE i); with their effective gates gate In i and
gate OUT_ 4 );

— step(iii) definition of the behaviour of each filter and pipe by choosing a pattern.

At each step, the constraints given in the style definition must be satisfied.

step(i) Two external gates are required: an input gate X to receive the sequence (X); and an
output gate Y to send out the sequence of results (Y'),;. The external gate list represented by
the variable Ezt Gate list is equal to (X, Y). On both X and Y, the values are of a symbolic
expression type denoted EXP.

12



specification Convo[X, Y] : noexit
behaviour
behav_expr
where
local_def list
endspec

step(ii) As shown in Figure 2, we identify three kinds of filters: BROADCAST, ZERO, and CELL.
For each one, their characteristics are the following:

— BROADCAST receives the sequence of (X); on its gate X and broadcasts its values to the
cells sending them via pipes on gates XB1, XB2, XB3. Data on these gates X, XB1, XB2,
XB3 are of type EXP. BROADCAST is parameterised by the number of cells to which it must
broadcast the values.

— ZERO initialises the computation by sending a zero to the first cell via a pipe on gate YO1.

— Each component CELL computes a product of an input with its own weight W; and sums
it with the current result received. The new result is sent out. Therefore, a cell has two
input and an output gates. The first cell receives the value zero on gate Y10 and the X;
on gate X1, it sends the results on gate X12. The second cell receives the current result on
gate Y21 and the X; on gate X2, it sends the results on gate X23. The last cell receives the
current result on gate Y32 and the X; on gate X3, it sends its result to the environment
on gate Y. Each cell is parameterised by its weight W;.

All the filters are connected by pipes called PIPE. Table 3 summarises the characteristics
of the components and connectors of the convolution product according to the Pipe&Filter
style. From these characteristics, we instantiate the pattern of global configuration given in
Section 3.2.

Architectural Configuration

behav_ezxzpr =
hide XB1, XB2, XB3, X1, X2, X3, Y01, Y10, Y12, Y21, Y23, Y32 in
« BROADCAST [X, XB1, XB2, XB3](3)

|1l ZERO [YO1]
|1l CELL [X1, Y10, Y12] (W1)
|1l CELL [X2, Y21, Y231 (W2)
[l CELL [X3, Y32, YI (W3) )

I[ XB1, XB2, XB3, X1, X2, X3, Y01, Y10, Y12, Y21, Y23, Y32 1|

( PIPE [XB1, X1]
|1l PIPE [XB2, X2]
|1l PIPE [XB3, X3]
|1l PIPE [YO1, Y10]
|1l PIPE [Y12, Y21]
|1l PIPE [Y23, Y32] ))

Let us note that, with p the number of filters equal to 5 and ¢ the number of pipes equal
to 6, the constraints number 1, 2 and 3 concerning the configuration and the conditions on
global configuration given in section 3.2 are satisfied.
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Table 3. Summary of characteristics of the convolution product following the Pipe&Filter style

Component gate_list_IN: data type | gate_list_OUT: data type | data type of local state
(Filter) BROADCAST X : EXP X1 : EXP, X2 : EXP, X3 : EXP NAT(3)
(Filter) ZERO - YO1 : EXP -
(Filter) CELL X1 : EXP, Y10 : EXP Y12 : EXP EXP(W1)
(Filter) CELL X2 : EXP, Y21 : EXP Y23 : EXP EXP(W2)
(Filter) CELL X3:EXP, Y32:EXP Y:EXP EXP(W3)
Connector | gate_IN: data type | gate_OUT: data type

PIPE Y01 : EXP Y10 : EXP

PIPE Y12 : EXP Y21 : EXP

PIPE Y23 : EXP Y32 : EXP

PIPE XB1 : EXP X1 : EXP

PIPE XB2 : EXP X2 : EXP

PIPE XB3 : EXP X3 : EXP

| List of the external gates : Ezt_Gate_list = (X, Y)]

step(iii; ) Filters Behaviour.

— BROADCAST sends to the three cells the value received. Therefore, the computation is
the identity. Concerning the emission, during the initialisation, BROADCAST has a special
behaviour?: X; is just sent to the first cell, X5 to the two first cells and the other X;(i > 3)
to every cell. This behaviour is obtained by guarding the emissions. Given D a delay that
is initially equal to K the number of cells, the delay D is decreased for each iteration
until zero. BROADCAST will send the values to a number of cells depending on the delay. If
the delay D is zero, then it sends the values to all the cell. Otherwise, it will send them
to all the cells except the last D ones. For example in our case study with three cells,
if the delay D is equal to 2, a value will be sent to the first cells and not to the last
two cells. BROADCAST can be specified either as a blocking or a non-blocking filter. Their
specifications are given below.

— ZERO is a degenerated kind of filter: it has no input, it computes a constant 0 and sends it
out on one gate. We instantiate the general pattern with n =0, m =1 and F= 0. It can
be simplified with neither data reception nor computation behaviours.

process ZERO [Y01] : noexit :=
Y01 ! (0 of EXP);
ZERO [YO01]

endproc

— A CELL adds to the current result the product of an input X; with its own weight W; and
sends out the result. We can specify it either as a blocking or a non-blocking filter. Its

2 This initialisation phase is typical in a pipeline system. A number of delays equal to the number of filters is
required by data flow to attain the rightmost filter:

Yi=WixXi+ WoxXo+ Wax X3

Yo= Wi Xo+ Wox Xz + Ws* X4

Yo=WixXa+ WoxXy+ WaxXs

Y, Wix Xg+ Wox X5+ Wi * Xg
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BROADCAST defined as a Blocking Filter

process BROADCAST [X, X1, X2, X3]( K: NAT ): noexit

Reception [X] >> accept x1: EXP in ( Computation( x1, K )
>> accept yl: EXP, y2: EXP, y3: EXP, Ki: NAT in
( Emission [X1, X2, X3]1( y1, y2, y3, K1)
>> BROADCAST [X, X1, X2, X3]J( K1) ) )
where
process Reception [X] : exit (EXP)
:= ( X ?x1: EXP; exit(x1) )
endproc
process Computation ( x1: EXP, K: NAT ) : exit ( EXP, EXP, EXP, NAT )
:= [K eq 0] -> exit ( x1, x1, x1, K )
(]
[K gt 0] -> exit ( x1, x1, x1, (K - 1))
endproc
process Emission [X1, X2, X3] ( yl1: EXP, y2: EXP, y3: EXP, K1: NAT ):exit
( ( (K <=2] -> (X1 !yl ; exit )) [I ([not (K <= 2)] -> exit) )
I ¢ (K <= 1] => ( X2 !'y2 ; exit )) [0 ([mot (XK <= 1)] -> exit) )
Il ¢ ([K eq 0] -> ( X3 !'y3 ; exit )) [1 ([not (K eq 0)] -> exit) ) )
endproc
endproc

BROADCAST defined as a Non-blocking Filter

process BROADCAST [X, X1, X2, X3]( K: NAT ): noexit

hide intl, int2 in (
reception [X, inti]
| [int1]| Computation[intl, int2]( K )
| [int2] |[Emission [int2, X1, X2, X3] )
where
process Reception [X, intl] : noexit

X ?x1: EXP; exit(xl)
>> accept x1: EXP in
( intl !x1; Reception [X, intil] )
endproc
process Computation [intl, int2] ( K: NAT ) : noexit
:= [K eq 0] -> int1 ? y1: EXP;
int2 !'y1 !'y1 !y1 'K ;
Computation [intl, int2] ( K )
(]
[K gt 0] -> intl ? y1: EXP;
int2 !y1i !'yi !y1 !'(K-1) ;
Computation [intl, int2] ( K-1 )
endproc
process Emission [int2, X1, X2, X3] : noexit

int2 7yl: EXP ?y2: EXP 7y3: EXP 7K: NAT ;
( ( (K <=2] -> (X1 !yl ; exit )) [I ([not (K <= 2)] -> exit) )
111 ¢ (K <= 11 -> ( X2 !'y2 ; exit )) [1 ([mot (K <= 1)1 -> exit) )
Il ¢ ([K eq 01 -> ( X3 !y3 ; exit )) [1 ([not (K eq 0)] -> exit) ) )
>> Emission [int2, X1, X2, X3]
endproc
endproc
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computation is defined as follows:

F: EXP, EXP, EXP — EXP

F(wi, X, Y) =W, xX;+Y
The specification of CELL defined both as a blocking and a non-blocking filter are given
below.

step(iiiz) Pipes Behaviour.

We have six pipes. Each of them can either be a simple, a bounded or an unbounded pipe.
Provided given this choice and the data type EXP of the values passing through the pipe, the
instantiation is systematic. Let us note that in both cases of bounded and unbounded pipes,
in the architectural configuration, the buffers have to be initialised to init, for example: an
unbounded buffer initialised by PIPE [XB1, X1](init of BUF) and a buffer with 3 places
by PIPE [XB1, X1] (init (3, init of BUF)).

In order to be able to verify the architectural constraints of the style, some annotations are
required . The introduced processes are annotated with the attribute Archi equal to Pipe (for
the process PIPE) or to Filter (for the processes BROADCAST, ZERO and CELL). The annotated
specification satisfies all the architectural constraints given in section 3.3. It confirms the
conformity of the specification to the Pipe&Filter style.

Results

The different solutions compared are constructed varying the kind of cells (blocking or non-
blocking), of broadcast filter (blocking or non-blocking), of pipe (simple, bounded or un-
bounded). In addition, the data types used are or not compiled in C. The CADP tool (Cae-
sar/Aldebaran Distribution Package) [FGM™192] is used to compare the different solutions
obtained using style variations. All the solutions have been demonstrated equivalent with
respect to the safety equivalence [FM91]. Table 4 compares the size of the labelled transitions
systems (LTS) computed by the tool.

Cases (a) and (b) differ on the EXP data type definition. In (a), the specification includes
the abstract data type definition while in (b), the data type is defined externally, directly in
C. The LTS are the same.

Cases (c) and (d) compare bounded and unbounded pipes. In (c) the size of the buffer is
3 for pipes between BROADCAST and cells, 1 for the pipe between ZERO and the first cell. In
case (d), the pipes are unbounded except for the one linking ZERO (an unbounded pipe makes
it possible for ZERO to send infinitely its zeros, the LTS becoming infinite). Naturally, the (d)
LTS is larger than the (c) one.

Cases (e), (f) and (g) introduce non-blocking filters. Again, this increases the LT'Ss.

5 Conclusion

We have presented, by means of the Pipe&Filter style, a methodology to formalise architec-
tural styles. To specify is to describe a behaviour. Our formalisation proposes both general
and specific patterns that can be directly used in order to develop an architecture. All the
patterns corresponding to a component or to a connector are equivalent with respect to safety
equivalence. The characteristics of the style, defined as typed and constrained variables, are
to be considered as its parameters. Making them explicit, makes it straightforward to instan-
tiate the style. The resulting specifications are by nature of the style, i.e. the architectural
constraints are satisfied.
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CELL defined as a Blocking Filter

process CELL [X_IN, Y_IN, Y_OUT] (W:EXP) : noexit :=
Reception [X_IN, Y_IN]
>> accept X:EXP, Y:EXP in Computation (X, Y, W)
>> accept Z: EXP in (
Emission [Y_OUT] (Z)
>> CELL [X_IN, Y_IN, Y_OUT] (W) )
where
process Reception [IN1,IN2] : exit (EXP, EXP) :=
( IN1 ?X: EXP ; exit(X,any EXP)
[11
IN2 ?Y: EXP ; exit(any EXP,Y) )
>> accept X, Y : EXP in
exit(X, Y)
endproc
process Computation (X, Y: EXP, W: EXP) : exit(EXP) :=
exit (Y + (W * X))
endproc
process Emission [QUT1] (Z: EXP): exit :=
( OUT1 'Z ; exit )
endproc
endproc

CELL defined as Non-Blocking Filter

process CELL [X_IN, Y_IN, Y_OUT] (W:EXP) : noexit :=
hide IG1, IG2 in
Reception [IG1, X_IN, Y_IN]
I [1G1]]
Computation [IG1, IG2] (W)
1 [1G62]1
Sending [IG2, Y_OUT]
where
process Reception [IG, IN1,IN2] : noexit :=
( IN1 ?X: EXP ; exit(X,any EXP)
11
IN2 ?Y: EXP ; exit(any EXP,Y) )
>> accept X, Y : EXP in
IG !'X 'Y ;
Reception [IG, IN1,IN2]
endproc
process Computation [IG1,IG2](W: EXP) : noexit :=
IG1L 7X: EXP 7 Y: EXP ;
> IG2 (Y + (W * X));
Computation [IG1,IG2] (W)
endproc
process Sending [IG, OUT1] : noexit :=
IG ? Z : EXP ;
( OUT1 !Z ; exit )
>> Sending [IG, OUT1]
endproc
endproc
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Table 4. Comparing Variations of the Specifications

case CELL BROADCAST data type PIPE buffer size | states | transitions
(a) blocking blocking EXP (ADT) simple 1 38694 160241
(b) blocking blocking EXP(C) simple 1 38694 160241
(c) blocking blocking | EXP(C) ,BOUNDED_BUF (ADT) | bounded 3 269311 1189813
(d) blocking blocking EXP(C) ,BUF (ADT) unbounded - 331250 1466727
(e) blocking non-blocking EXP(C) simple 1 64188 285230
(f) | non-blocking blocking EXP(C) simple 1 67756 315450
(g) | non-blocking | non-blocking EXP(C) simple 1 97798 469611

Formal descriptions of architectural styles and concrete architectural designs are important
because only architectural descriptions with a formal semantics make it possible to precisely
answer the questions stated by Clements [Cle96]: What are the components? How do they
behave? What do the connections mean?

We are not the first one to formalise software architectures and styles. Ad hoc notations
have been defined such as Wright[A1197] or Rapide [DJL'95]. Several existing formal notations
have also been used. Among others, we can cite CSP [AG94], Z [DG91,AAG93], Larch [CP97],
graph grammars [Met96] and even LOTOS [Tur98]. One of the advantages of using an existing
formalism, is the availability of environments or validation tools such as CADP we used.
LOTOS, with its two parts: a process algebra and algebraic abstract data types, enable the
behaviour together with data transformations to be specified.

Concerning the variations, there is not much existing work. The question is: how the
different variations are related? We propose the safety equivalence. The refinement patterns
defined in [MQ94] could be considered as variations patterns, seeing refinement as a kind of
variation.

We are very much concerned with the development process. In the example, we have
sketched a method for developing architectures introducing different steps. This approach is
related to the agendas [Hei98].

Future work include the definition of the architectural styles as development operators of
the PROPLANE environment [SL96]. In PROPLANE the development of a specification is
defined as a sequence of steps in which each step maps some development state to the next
one by the application of some operator. When using this tool, the specifier selects predefined
operators in a library. Constraints are associated to the operators and verified at each step.
This makes the development secure and easy.
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6 A Summary of LOTOS used in this paper

LOTOS [BB87] is a formal specification language developed to specify open distributed sys-
tems. A LOTOS specification describes the global behavior of interacting processes. A process
can be parameterized by abstract data types, and it can exchange typed values with other
processes and call functions to transform data. Communication between processes in LOTOS
is synchronous, i.e., two processes must participate in a common action at the same time.
Gates are used to synchronize processes and to exchange data. Each process definition has
the syntactic form

process process_name [gate_list](params): func:=
behaviour behav_exzpr
where local_def_list

endproc

where func indicates whether the process terminates (func= exit or exit(v) if it ter-
minates sending a value v) or not (func= noexit). The behavior expression describes the
sequences of observable actions that may occur at the gates of the process. Process definitions
may include instantiations of processes.

The choice operator [] is used when alternative behaviors are allowed. The behavior
expression P1 []1 P2 expresses that exactly one of the two processes will be executed, de-
pending on a choice of the environment.

The behavior expression P1 ||| P2 (interleaving) expresses that the two processes P1
and P2 behave independently and in parallel.

The behavior expression P1[G] |[G]| P2[G] (parallel composition) expresses that the
two processes P1 and P2 must synchronize on the gate G. During the synchronization, they
may exchange data. To synchronize, two processes must contain an action via the same gate
G. To exchange data, one of them must contain an action G ? t: v which reads a value v of
type T via gate G. The other process must contain an action G ! exp that writes a known
value exp of type T onto the gate G. It is also possible to read or write more than one value
in the same action, for example writing G ? v: T ?w: T’. An action can be guarded by a
predicate, for example writing G ? v: T [pred].

Behaviors may be made conditional by using the guard operator [pred] -> beh . The
behavior expression beh will take place only if the predicate pred is satisfied.

In LOTOS, data are described using abstract data types with conditional equations and an
initial semantics. Abstract data types are used for describing process parameters and values
exchanged by the processes.
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