Finding at least one point in each connected component of a real algebraic set defined by a single equation

Fabrice Rouillier 1 Marie-Françoise Roy Mohab Safey El Din
1 POLKA - Polynomials, Combinatorics, Arithmetic
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Deciding efficiently the emptiness of a real algebraic set defined by a single equation is a fundamental problem of computational real algebraic geometry. We propose an algorithm for this test. We find, when the algebraic set is non empty, at least one point on each semi-algebraically connected component. The problem is reduced to deciding the existence of real critical points of the distance function and computing them.
Type de document :
Rapport
[Intern report] A00-R-017 || rouillier00a, 2000, 42 p
Liste complète des métadonnées

https://hal.inria.fr/inria-00107845
Contributeur : Publications Loria <>
Soumis le : jeudi 19 octobre 2006 - 09:11:41
Dernière modification le : jeudi 11 janvier 2018 - 06:19:48
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 12:38:04

Identifiants

  • HAL Id : inria-00107845, version 1

Collections

Citation

Fabrice Rouillier, Marie-Françoise Roy, Mohab Safey El Din. Finding at least one point in each connected component of a real algebraic set defined by a single equation. [Intern report] A00-R-017 || rouillier00a, 2000, 42 p. 〈inria-00107845〉

Partager

Métriques

Consultations de la notice

184

Téléchargements de fichiers

43