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Hardware-friendly neural computation
of symmetric boolean functions

Bernard GIRAU

Abstract

The theoretical and practical framework of Field Programmable Neural Arrays has been
defined to reconcile simple hardware topologies with complex neural architectures: FPNAs lead
to powerful neural models whose original data exchange scheme allows to use hardware-friendly
neural topologies. This report addresses preliminary results in the study of the computation
power of FPNAs. The computation of symmetric boolean functions (e.g. the n-dimensional
parity problem) is taken as a textbook example. The FPNA concept allows successive topology
simplifications of standard neural models for such functions, so that the number of weights is
reduced with a factor up to n with respect to previous works.

Note: FPNAs have already been studied in LORIA reports [Gir99c, Gir99d]. Therefore the
description of FPNAs in section 2 is useless for the readers of these previous reports. Indeed, this
report is a detailed study of a result briefly mentioned in [Gir99c]. It slightly extends the results
of the original work in [Gir99b].

1 Introduction

Various fast implementations of neural networks have been developed. A broad introduction to
parallel neural computing may be found in [NS92]. The very fine-grain parallelism of neural
networks uses many information exchanges, so that hardware implementations are more likely
to fit neural computations. Nevertheless, digital hardware implementations of neural networks
(on FPGAs!, ASICs?, neuro-computers, ..., see [Gir00, Mor95]) either handle simplified neural
computations or simple neural architectures, or they have to limit themselves to few well-fitted
neural architectures. An upstream work is preferable ([Gir00]): neural computation paradigms may
be defined to counterbalance the main implementation problems, and the use of such paradigms
naturally leads to neural models that are more tolerant of hardware constraints, without any
additional limitation. Since the main implementation difficulties are linked to area-greedy operators
and complex topologies, two kinds of hardware-adapted neural computation paradigms may be
found. Several models, such as bit-stream neural networks ([Sal94, vDJST93]), allow to handle
area-saving neural computations, whereas the work of [Gir99b] leads to complex neural processings
based on simplified topologies.

The Field Programmable Neural Arrays of [Gir99b] are based on a FPGA-like approach: a set of
resources whose interactions are freely configurable. These resources (links and neural operators)
are defined so as to perform computations of standard neurons, but they behave in an autonomous
way. As a consequence, numerous virtual links may be achieved thanks to the application of a

LConfigurable hardware devices such as Field Programmable Gate Arrays offer a compromise between the hard-
ware efficiency of ASICs and a software-like flexibility.
2 Application Specific Integrated Circuits



multicast data exchange protocol to the resources of a sparse neural network. This new neural
computation concept enables a simplified neural architecture to replace a virtual complex one.

The practical study of [Gir99b, Gir99d] shows that FPNAs lead to very efficient hardware im-
plementations of neural networks. The theoretical study of FPNAs ([Gir99b, Gir99a]) includes
the determination of their computation power. FPNAs appear as more powerful than standard
multilayer models for the exact computation of discrete functions (i.e. FPNAs require less neural
resources). Conversely, FPNAs are less powerful than standard multilayer models for the exact
computation of continuous functions (i.e. the weights of the virtual links are constrained in a sub-
space). As for the problem of approximate computing, [Gir99b, Gir99d] show that the topological
simplifications of FPNAs do not infer a significant loss of approximation capability.

This report shows how FPNAs allow simplified neural architectures to compute discrete func-
tions. The case of symmetric boolean functions is studied. The textbook case of the parity problem
is detailed. Section 2 shortly describes the FPNA computation paradigm. Section 3 shows how
this paradigm applies to symmetric boolean functions. Subsection 3.1 recalls previous results.
Subsection 3.2 shows how the FPNA concept may be used so as to get rid of any shortcut link.
Subsection 3.3 finally describes how a FPNA with O(/n) weights may replace the quasi-optimal
shortcut perceptron of [SRK91] that has O(n/n) weights.

2 FPNAs

Two kinds of autonomous neural resources appear in a FPNA: neurons that apply standard neural
functions to a set of input values on one hand, and communication links that behave as independent
affine operators on the other hand. In a standard neural model, each communication link is a
connection between the output of a neuron and an input of another neuron. The number of inputs
of each neuron is its fan-in in the connection graph. On the contrary, communication links and
neurons become autonomous in a FPNA: their dependencies are freely programmable.

More precisely, the communication links connect the nodes of a directed graph, each node
contains one neuron. The specificity of FPNAs is that relations between any of the local resources
of each node may be freely set. A link may be connected or not to the local neuron and to the
other local links. Therefore direct connections between affine links appear, so that the FPNA
may compute numerous composite affine transforms. These compositions create numerous virtual
neural links.

2.1 Formal definition of FPNAs
A FPNA is defined® by means of:

e a directed graph (N, &), where N is a finite set of nodes, and £ is a set of directed edges
without loop: for each node n, the set of the direct predecessors (resp. successors) of n is
defined by Pred(n) = {p € N' | (p,n) € £} (resp. Succ(n) = {s € N | (n,s) € £}), the set of
the input nodes is N; = {n € N' | Pred(n) = 0},

e aset of neurons ((0n,in, fn))pen> Where 6, € IR, iy is a function from IR? to IR, and f, is a
function from IR to IR: for each node there is one neuron resource that sequentially handles
any neuron computation®,

3This report presents a simplified FPNA definition which is sufficient as long as hardware implementations are
not taken into account.

4 Any standard neuron computation may be performed by means of a loop that updates a variable with respect
to the neuron inputs, and a final computation that maps this variable to the neuron output. #, stands for the
initialization value (see [Gir99b]). The iteration function ¢, stands for the updating function inside the loop. The
neuron output is finally computed with fy.



* a set of affine functions (z — Wy (p)z + Tn(p)) , n)ce: for each node there are as many com-

munication links as this node has got predecessors, each communication link is associated
with an affine operator,

e for each node n in N' — N,

— a positive integer a,: number of iterations before a neuron applies its transfer function,

— for each p in Pred(n), a binary value r,(p): set to 1 iff the link (p,n) and the neuron
in n are connected,

— for each s in Suce(n), a binary value S, (s): set to 1 iff the neuron in n and the link
(n, s) are connected,

— for each p in Pred(n) and each s in Succ(n), a binary value R,(p,s): set to 1 iff the
links (p,n) and (n, s) are connected,

e for each input node n in N,

— a positive integer ¢,: number of global inputs sent by this node,

— for each s in Succ(n), a binary value S, (s) (see above).

2.2 Computing in a FPNA

Several computation methods have been defined for the FPNAs. In any such method, all resources
behave independently, and when a resource receives values, it applies its local operator(s), and sends
the result to all neighboring resources to which it is locally connected (a neuron resource waits for
an, values before sending any result to its neighbors). Unlike standard neural computations, the
FPNA paradigm allows a resource to be connected or not to a neighboring resource. Moreover, a
communication link may handle several values, and it may directly send them to other links.

The following sequential computation illustrates the basic FPNA principles. This computation
method handles a list of tasks £ that are processed according to a FIFO scheduling. Each task
[(p,n), ] corresponds to a value z sent on a communication link (p,n).

Initialization:

e For each input node n in N, ¢, values (z'gf)) are given (global inputs of the
i=1l..cp,

FPNA), and the corresponding tasks [(n,s),x,(f)] are created for all s in Succ(n) such
that S,(s) = 1. The order of creation corresponds to a lexicographical order on
(n,i,s) (with respect to the order of N).

e Each node n in N'— N; has got local variables ¢, and x,, initially set as ¢, = 0 and
Ty = 6.
Sequential processing: (while £ is not empty)
Let [(p,n), z] be the first element in L.

1. remove this element from L
2. compute ' = W, (p)x + Tr(p)

3. for all s € Succ(n) such that (R, (p))(s) = 1, create [(n,s),z'] according to the order
on s

4. if rp(p) = 1 (the neuron in n is said to be receiving the value of task [(p,n), z])

e update ¢, and T, : ¢, = ¢p + 1, Tp = in(Tp,x')



e if ¢, = a, (the local neuron computes its output)

(a) Y= fn(xn): cn=0,z, =06,
(b) for all s € Succ(n) such that S, (s) =1, create [(n, s),y] according to the order
on s

3 Symmetric boolean functions by FPNAs

3.1 A previous quasi-optimal solution

The neural computation of symmetric boolean functions has been a widely discussed problem.
The quasi-optimal results of [SRK91] answer a question that was posed as early as in [Kau61]. A
boolean function f : {0,1}? — {0,1} is said symmetric if f(z1,...,24) = f(Z,q1),--->To(a)) for
any permutation o of {1,...,d}. An example is the d-dimensional parity problem: it consists in
classifying vectors of {0,1}? as odd or even, according to the number of non zero values among the
d coordinates.

This problem may be solved by d-input multilayer perceptron (MLP) or shortcut perceptrons.
A MLP consists of several ordered layers of sigmoidal neurons. Two consecutive layers are fully
connected. A shortcut perceptron also consists of several ordered layers of sigmoidal neurons. But
a neuron in a layer may receive the outputs of the neurons in all previous layers. A layer which is
not the input layer nor the output layer is said hidden. A MLP is indeed a special case of shortcut
perceptron, where the weights of the shortcut links are zero (links between non-consecutive layers).

The search for optimal two-hidden layer shortcut perceptrons in [SRK91] has led to solve the
d-dimensional parity problem with only v/d(2 4+ o(1)) neurons, thanks to an iterated use of a
method introduced in [Min61]. The shortcut links and the second hidden layer are essential in
this work, though there is no shortcut link towards the output neuron. This neural network uses
d(2v/d + 1 + o(1)) weights. Previous results used O(d) neurons and O(d?) weights. The results of
[SRK91] apply to any symmetric boolean function.

Figure 1 shows the topology of the optimal shortcut network of [SRK91] for the 15-dimensional

parity problem. In such a neural network, the first hidden layer may contain [\/E-I neurons such

d
. . 0 ifz<0
that the i-th neuron of this layer computes y;1 = o Zl zj+ 0; |, where o(z) = { 1 ifr>0
J:
The second hidden layer contains at most “ij&l] -‘ neurons such that the i-th neuron of this layer
|vd] d
computes y;2 = o Z w; j2Yj1 + (—1)’21:]- . Finally the only output neuron computes
j=1 j=1
Vd
y=o Zwi,j,3yj,2 +0
i=1

3.2 Removing the shortcut links

The construction in [SRK91] implies that for any (,7), (—1)* and w; ;2 have opposite signs.
Therefore all shortcut links (between the input and the second hidden layer) may be virtually

replaced by some direct connections between incoming and outgoing links in the first hidden layer
of a FPNA. This FPNA has got dv/d(1+0(1)) weights, instead of dv/d(2+0(1)) weights in [SRK91].
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Figure 1: 2-hidden layer shortcut perceptron for the parity problem (d = 15)

More precisely, the architecture of the FPNA is the same as the shortcut perceptron of [SRK91],
without all shortcut links. The weights of the links between both hidden layers are as in [SRK91].
Each neuron is fully connected to all incoming and outgoing links (V (p,n) r,(p) = 1 and V (n, s) S, (s) =
1). If n is the i-th node of the first hidden layer, and if s is the i-th node of the second hid-
den layer, then for any p € Pred(n), there is a direct connection between (p,n) and (n,s) (i-e.
(Rn(p))(s) = 1). If n is the i-th node of the first hidden layer, then for any p € Pred(n),

W, (p) = ——L— and T,,(p) = 0. If n is the i-th node of the first hidden layer, then 6, = — -

Wi,i,2 Wi,5,2 "
Figure 2 sketches the architecture of such a FPNA for a 15-dimensional symmetric boolean func-

tion.

3.3 Towards a simplified 2D architecture

The topological simplifications allow to get rid of the shortcut links in the neural networks of
[SRK91]. Yet the FPNA of figure 2 still does not have a hardware-friendly architecture (too many
links and too large fan-ins). Designing a hardware-friendly FPNA for symmetric boolean functions
involves a more drastic simplification of the architecture. The full connection scheme between
consecutive layers may be virtually replaced by the use of sparse inter-layer and intra-layer links,
thanks to the FPNA computation paradigm. The implementation of the required links fits a 2D
device.

The construction of a FPNA in section 3.2 does not depend on the symmetric boolean function
that is dealt with. On the contrary, the determination of the weights in a hardware-friendly
FPNA for symmetric boolean functions takes advantage of function-dependent weight similarities
in [SRK91]. Such FPNA constructions and weight determinations have been successfully performed
for various symmetric boolean functions with different input dimensions, so that it appears that
for any d and for any symmetric boolean function f, a FPNA with the same number of neurons
as in [SRK91], but with only O(v/d) weights computes f ezactly as in [SRK91]. Nevertheless, this
assertion has not yet been formally proved. The parity problem may be taken as an example:
in [SRK91], the weight of the link between the i-th neuron of the first hidden layer and the j-th
neuron of the second hidden layer only depends on (—1)7 when i # 1. The construction of a 2D
FPNA for this problem does not depend on the input dimension (see [Gir99b]).

e The number of nodes in each hidden layer is the same as the number of neurons in [SRK91].
The number of input nodes is the number of nodes in the first hidden layer. Each input node
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Figure 2: 2-hidden layer FPNA for the parity problem (d = 15)

(possibly except the last one) sends [\/E-I input values z;.

e The inter-layer links are: for any ¢, one link from the ¢-th input node towards the i-th node
of the first hidden layer, and one link from the i-th node of the first hidden layer towards the
i-th node of the second hidden layer, and one link from the i-th node of the second hidden
layer towards the output node. Moreover, for any j > 1, there is a link between the first
node of the first hidden layer and the (2j — 1)-th node of the second hidden layer.

e The intra-layer links are: in both hidden layers, for any 4, one link from the i-th node towards
the (7 + 1)-th node, and another one towards the (i — 1)-th node.

e The S, (s), rn(p) and (R, (p))(s) parameters are set so as to ensure a virtual full connection
scheme between consecutive layers. Moreover the (R, (p))(s) parameters are set so that any
virtual shortcut link involves the first node of the first hidden layer. See [Gir99b] for more
details and for the weight determination.

This FPNA (for any number d of inputs) is easy to map onto a 2D hardware topology, whereas
the equivalent shortcut perceptron defined in [SRK91] rapidly becomes too complex to be directly
implemented when d increases. Figure 3 shows the architecture of the FPNA for the 15-dimensional
parity problem.

Moreover, the theoretical study of [Gir99b, Gir99d] shows that the above FPN As satisfy several
conditions that ensure a computation time proportional to the number of weights as in standard
multilayer models (such FPNAs are feedforward, deterministic and synchronous). Therefore, the
FPNA paradigm allows to minimize the computation time of a symmetric boolean function by a
neural network: previous works led to a O(dv/d) computation time, whereas a O(v/d) computation
time is achieved thanks to the topological simplifications of the FPNAs.

4 Conclusion

The FPNA framework is a neural computation paradigm that has been defined in order to fit
direct digital hardware implementations. The theoretical study of this original neural computation
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Figure 3: 2D FPNA for the parity problem (d = 15)

scheme includes many results whose interest lies far beyond the field of neural implementations.
This report shows how FPNAs allow successive topological simplifications of the standard neural
architectures that compute symmetric boolean functions. The shortcut links and then the full inter-
layer connections are removed, and the FPNA computation protocol replaces them by virtual links
based on numerous multicast composite connections. This work allows to compute d-dimensional
symmetric boolean functions by neural models with O(v/d) weights, instead of O(dv/d) weights
in the best previous works. In each case, the computation time is proportional to the number
of weights. The results of [SRK91] are proved to be quasi-optimal in the number of neurons (so
that the FPNAs defined above are also quasi-optimal). The question of the above FPNAs being
quasi-optimal in the number of weights is now posed.
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