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Rewriting*

Quang-Huy Nguyen
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BP 101, 54602 Villers-les-Nancy Cedex, France
email: Quang-Huy.Nguyen@loria.fr

Abstract. Innermost strategy is usually used in compiling term rewrit-
ing systems (TRSs) because it allows to build efficiently the result term
in a bottom-up fashion. However, the innermost strategy does not always
give the shortest normalising derivation. In many cases, using an appro-
priate laziness annotation on the arguments of the function symbols,
we evaluate the lazy arguments only if it is necessary and hence, get a
shorter derivation to the normal form while avoiding the non-terminating
reductions. We provide in this work a transformation of the annotated
TRSs, that allows to compute the normal form using an innermost s-
trategy and to extract a lazy derivation in the original TRS from the
normalising derivation in the transformed TRS. We apply our result to
improve the efficiency of equational reasoning in the Coq proof assistant
using ELAN as an external rewriting engine.

1 Introduction

Proof assistants like PVS [4], KIV [17] or Coq [13] advocate the use of equa-
tional reasoning for improving efficiency and reducing user interactions. In Coq,
the proof objects are stored after each deduction step. The correctness of a
proof is justified by type-checking these objects. This mechanism allows one
to extract a certified program from the proof of its specification. However, a
proof of equality requires a lot of user interactions and the generated proof
object is huge since it contains the context of every rewrite step. In [1], we
propose an approach to deal with these problems using ELAN [19] as a fast
oracle: Coq first delegates a term normalisation process to ELAN and then, re-
plays the normalisation trace provided by ELAN and which is a list of pairs
(rule_label, position_of _contracted_redezx) to get the normal form (NF) of the
term. Trace replaying consists of the syntactic pattern matching between redex
and the left hand side of the rule and the replacement of redex by the instanti-
ation of the right hand side. The cost of syntactic pattern matching is linear in
the size of the LHS which is relatively small. Meanwhile, the cost of finding out a
redex done by ELAN depends on the size in the term to be reduced which can be

* All absent proofs can be found in the complete version available at
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very huge. Thus, ELAN performs the proof search and Coq checks the proof later.
Coq and ELAN must work on the same canonical (confluent and terminating)
TRS. Naturally, ELAN should return to Coq an as compact as possible trace to
minimise the time needed for replaying. This time depends highly on the number
of rewrite steps and also on the position of contracted redices since an inner one
makes the proof objects for type-checking bigger.

In [8], the authors propose lazy rewriting with laziness annotation: each ar-
gument of a function symbol in the signature is annotated lazy or eager. Only
the eager arguments are eagerly reduced. A lazy argument is reduced only if this
reduction creates a new redex among the active subterms which contain it. We
will give a formal definition of an active subterm in section 3 but one can see
it as a subterm which is allowed to be eagerly reduced, the root being always
active by default. For short, in the sequel of this paper, we denote lazy rewriting
with laziness annotation by lazy rewriting. In many cases, lazy rewriting might
give a shorter derivation to the NF than innermost strategy since the lazy ar-
guments are evaluated by need. Furthermore, lazy rewriting allows dealing with
infinite structures by avoiding reductions on the non-terminating branches. This
property is important when working with non-terminating TRSs.

Due to the laziness annotations, some subterms of a term will not be rewritten
during lazy rewriting. These subterms are called lazy. Lazy rewriting normalises
a term to its lazy normal form where all active subterms are in head normal
form (HNF). The lazy subterms may be reducible, but their reduction may not
be finite if the TRS is not terminating. Otherwise, all lazy subterms can be
normalised recursively until HNF. Thus, lazy rewriting is one way that can lead
to the NF.

Also in [8], the authors show how to simulate correctly lazy rewriting by
innermost rewriting with respect to (w.r.t.) a new TRS obtained by transforming
the original TRS. This transformation process is called the thunkification. A
simulation is correct if it is complete, sound and termination preserving [12] [7].
In other words, correctness guarantees that no information on NFs in the original
TRS is lost. In order to keep the trace still useful for Coq, we also need to
investigate the relation between the normalising derivations before and after
any transformation.

In this paper, we show the correspondence between the normalisation traces
in the original and transformed TRS and we propose a normalisation procedure
based on lazy rewriting. This procedure yields a NF of the input term if the TRS
is terminating and so, its unique NF if the TRS is canonical. On the other side,
all normalising tasks in this procedure use the leftmost-innermost strategy, that
can be very efficiently performed in ELAN. Our new normalisation procedure is
used to replace the leftmost-innermost normalisation in the cases where by using
a relevant laziness annotation, the yielded normalising derivations are shorter.
Moreover, the subterms are sequentially reduced to HNF in a top-down fashion
and hence, the outer redices are usually contracted first.

The thunkification only works with the TRSs where no non-variable term is
put on the lazy arguments of a function symbol in the left hand sides of the rules.



In [8], the authors deal with this problem by transforming the original TRS into
a minimal TRS (i.e. each LHS contains no more than two function symbols) [7].
Hence, this transformation generates a fairly large number of new but simple
rules and of new function symbols. The minimal TRS given by the transforma-
tion is optimal for the abstract rewriting machine (ARM) [7] but not for ELAN
whose compiler uses an improved version of the many-to-one pattern matching
algorithm presented in [10]. Moreover, the transformation flattens the LHSs by
introducing the new function symbols whose arity is different from the arity of
the corresponding function symbols in the original TRS. This fact changes the
position of redices and so, makes the correspondence between the normalising
derivations more difficult to establish. Therefore, we propose another transfor-
mation (preliminary transformation) to overcome the limit of the thunkification
for the left-linear constructor-based TRSs whilst keeping a good correspondence
between the normalising derivations.

Since the TRSs are allowed to be overlapping, an order between the rules
needs to be explicitly shown. Like most of functional languages, ELAN uses tez-
tual ordering and we decided to keep it instead of using specificity ordering as
in [8]. On the other hand, we only consider the reductions (rewriting, lazy rewrit-
ing) on the terms without variables (ground terms). Furthermore, all rewrite
rules are required to be left-linear. Completeness of the thunkification does not
hold if the TRS is not left-linear. Some extensions are envisaged, for example,
by checking equality between the original form (in the original signature) of the
terms that instantiate the same variable. However, if the thunkification becomes
too complicated, then the gain in performance will be less clear.

This paper is organized as follows: first, we review briefly the definitions on
term rewriting; then, we give a rule-based formal definition of lazy rewriting and
of the mechanism of thunkification presented in [8]; next, we show the correspon-
dence between the normalisation traces and present the normalisation procedure;
then, the preliminary transformation is described. A complete example is also
given in order to illustrate the combination of the two transformations. We close
the paper by discussing some related works.

2 Term Rewriting

We mostly use the notations introduced in [5]. In particular, a signature X
consists of a set V of variables and a set F of function symbols. Arity of a
function symbol f in F is denoted by ar(f).

The set of terms over X is denoted by Ty whilst the set of ground terms
over X is denoted by Gy. The function symbol heading a term ¢ is denoted by
Head(t). A term is linear if no variable can occur more than once in it. A position
within a term is represented by a sequence of natural numbers describing the
path from the root of term to the head of the subterm at that position. The
position of the root of term is an empty sequence and is denoted by €. The set
of non-variable positions in a term t is denoted by FPos(t). A subterm rooted
at position p of a term ¢ is denoted by t|,. By t[s], we denote the term ¢ whose



subterm at position p is replaced by a term s. The subterm ¢|,, is a context of
the subterm t|p, if p; is a prefix of ps.

A substitution is a mapping from the variables of V to terms. If o is a sub-
stitution, then to denotes the result of applying o on t. We write t{z — s} a
term ¢t in which each occurrence of variable z is replaced by a term s. A term s
overlaps a term t if there exist a non-variable subterm ¢t|, and a substitution o
such that so = to|,. Notice that the variables of s and ¢ are renamed before, if
necessary, so that they are disjoint. By this definition, a term t always overlaps
itself at root position. However, this case is trivial and is not considered as an
overlap. Two terms s and ¢ are overlapping if s overlaps ¢ or vice versa.

A rewrite rule over a set of terms Ty is an ordered pair (/,r) of terms and
is denoted by I — r. We call | and r respectively the left hand side (LHS) and
the right hand side (RHS) of rule. A rewrite rule is often restricted by two
conditions: the LHS is not a variable and all variables occurred in the RHS must
be contained by the LHS. A rewrite rule is called left-linear/right-linear if its
LHS/RHS is linear.

A set of rewrite rules R over Ty is called a term rewriting system (TRS). In
order to identify a rule in a TRS, in this paper, a rewrite rule is often denoted
by [£] I = r where £ is the label of rule. A TRS R is called left-linear if all its
rules are. A TRS is overlapping if the LHSs of its two (not necessary distinct)
rules are. A symbol in F is called a defined symbol of a TRS R if it is the head
symbol of the LHS of a rule in R. A function symbol which is not a defined
symbol is called a constructor symbol of R. A TRS R is called constructor-based
if no defined symbol can appear inside a LHS. In a constructor-based TRS, only
the overlapping at the roots of its LHSs is possible.

Let R be a TRS. A term s in T rewrites to a term ¢ in Tx in one rewrite
step if there exist some rule [£] I — r in R, a position p in s, and a substitution
o such that: s|, = lo and t = s[ro],. We denote this rewrite step by s —»x t or

522t and the reflexive-transitive closure of relation —xr by =%. A derivation in
R is any (finite or infinite) sequence of rewrite steps. From an operational point
of view, a rewrite step consists of two phases: the pattern matching between s,
and [ gives the substitution o; the replacement of redex s|, in s by ro. Since
syntactic pattern matching yields no more than one solution, a position p and a
rule £ suffice to memorise the rewrite step from a given term s. The pair (¢, p)
is called the trace of this rewrite step. A redezr is an instance of the LHS of a
rule. A term is said to be in normal form (NF) w.r.t. R if it contains no redex.
A derivation from a term to one of its NFs is called a normalising derivation of
this term.

Definition 1 (Normalisation trace). Ift = t; b to tge e tn 15 a
normalisation derivation of term t w.r.t. R, then T)* = {{l1,p1),--- , {n,Pn)}
is the corresponding normalisation trace of t.

A term t is in head normal form (HNF) if there is no redex s such that ¢t =% s.
If a term is in HNF, then its head symbol cannot be modified in any derivation
issued from it. Hence, if a term t and all its subterms are in HNF, then ¢ is in
NF.



3 Lazy Term Rewriting

The signature is first given a laziness annotation that marks lazy or eager each
argument of its function symbols.

Definition 2 (Laziness annotation). Let ¥ = (V,F) be a signature. The
laziness annotation L of X is a mapping from F to {e,l}* such that:

Vf € F,L(f) is an ar(f)-tuple m = (@1, ... ,Tap(y)) where x; = | means the
i argument of f is lazy; x; = e means this argument is eager.

By 7r{ , we denote the it" element of £(f). In the sequel, when speaking about lazy
rewriting, a signature includes implicitly its laziness annotation. This laziness
annotation divides the set of positions in a term into two subsets: the active
positions and the lazy positions, that we define now.

Definition 3 (Active and lazy positions). Let t be a term in Gx;. We have:

- € is always an active position.

- for any position p of t such that Head(t|,) = f and Vi =1...ar(f): pi is
active if and only if p is and 7er = e; otherwise, p.i is called a lazy position.

The set of active positions in a term ¢ is denoted by APos(t). The subterms
rooted at an active position is called active. The other subterms of the term are
lazy. Thus, a subterm of ¢ is active if and only if the path from its head to the
root of ¢ contains no edge that connects a function symbol to one of its lazy
arguments.

Lazy rewriting is a restricted case of (standard) rewriting. Lazy rewriting
only applies on the active subterms of a term and a crucial behaviour of lazy
rewriting is that it can change the laziness property of a subterm from lazy to
active (subterm activation).

In order to apply lazy rewriting on a term ¢, we first decorate it. That is,
we annotate every subterm u of ¢ by u; where p is the position of » in ¢ and
Z = a meaning that u is an active subterm or z = [ meaning that w is lazy. All
subterms of a lazy subterm are also lazy. The operator ¢ decorates the subterm
s which is rooted at position p and occurs as an argument of the symbol heading
an active subterm of ¢: &(s,p, e) #» 55 and é(s,p, 1) w» si,.

Let ¢t be a term in Gx. We associate to t a decorated term tpc = DC(t%)
where DC is defined by the rule system in figure 1.

Symbol For any f € F:

Dc(fg(tla e atn)) = f;(DC(é(tlap-LW{)): s ,'DC(@(tn,p.n, Tl'f:)))
DC(f(t1, .- ytn)) ¥ Fo(DC(t1h1)s- .., DC(Enb.0))

Constant For any constant c: DC(c%) w» c% and DC(cl) w» cl,

Fig. 1. Rules for term decoration




Let G2 be the set of decorated terms generated by applying DC on the
terms in Gx: GBI = {t|3s € Gy : t = DC(s%)}. On the other hand, denote
by GRt™™ the set of all possible decorated terms generated by decorating the
terms in Gy (GBI C GPter™). The mapping UD : GR™™ — Gy removes all
decorations and returns the initial term.

The lazy rewriting at the root of a decorated term t by rule [ — r is denoted
by [l = r](t) and is described by the rules in figure 2. These rules transform a 4-
tuple: the first component is the term to be reduced; the second component is the
set of positions of the essential subterms (ES), i.e. the lazy subterms of ¢ which
correspond to a non-variable subterm of the pattern /; the third component is
of the form [ly,...,l, — r] where ly,...,l, are the subterms of the pattern I;
the fourth component is a list of decorated terms to be matched correspondingly
with I1,...,1,.

The aim of these rules is for modeling both pattern matching and lazy rewrit-
ing in the same process as it is done in [3] for standard rewriting. Rule Symbol-
Clash returns the initial term in case of conflict caused by an active subterm of
t during pattern matching. The lazy subterms never cause the conflict. This fact
differentiates pattern matching in lazy rewriting which is called pattern match-
ing modulo laziness from (standard) pattern matching. If a subterm of ¢ is lazy
and the corresponding subterm of [ is not a variable, then this lazy subterm is
called essential and EssentialSubterm inserts its position into ES. Decom-
position is applied if a symbol which roots an active subterm of ¢ matches with
the corresponding symbol in /. Instantiation instantiates a variable of the RHS
with a subterm without decoration of ¢. Replacement replaces the term by the
(decorated) instantiated RHS if ES is empty. In this case, no essential subterm
has been revealed and pattern matching modulo laziness is identical with pat-
tern matching. Moreover, ¢ is the substitution returned by the pattern matching
modulo laziness. If ES is not empty, then Activation is applied to activate one
essential subterm s of ¢ and hence, all active subterms of s. One can choose s
from ES using different strategies (leftmost, rightmost, ... ). However, the re-
sults presented in this paper are independent of the used strategy. If Activation
or Replacement is applied, then a lazy rewrite step is carried out and ¢ is called
a (lazy) redex since it matches modulo laziness with I. Formally, a (decorated)
term ¢ matches modulo laziness with a linear pattern [ if and only if the symbols
which root the active subterms of ¢ match with the corresponding symbols of i:

Vp € APos(UD(t)) N FPos(l) : HeadUD(t)|,) = Head(l|p)

Figure 3 describes operator LR that performs lazy rewriting inside a dec-
orated term ¢: LR replaces a subterm by the result of the application of lazy
rewriting on it. Moreover, the decoration of this result needs to be adapted to
its position in ¢ by the shifting operator SH : GRtr™ x N* — GBterm guch
that SH(s,p) adds a prefix p to the position in the decoration of s and of all
its subterms. We denote respectively the lazy rewriting relation w.r.t. R and
its reflexive-transitive closure by ~»» and ~%. A lazy rewrite step by a rule

labelled £ at the position p of term is denoted by <4



Initialisation [l — r](t) = [t][0][l — r](¢)
Decomposition For any f € F

[EESI . FEy e stn)s e =11 251, s 80y ) oy
[EIES]L .. yt1, e tmyeee =71 81y s Smyens)

SymbolClash For any f,g € F and f#g
RIES]. .., f(t1,.-stn), oo = 7] 195 (81,02 1 Sm), ... ) w» t
EssentialSubterm For any f € F, any subterm s which is decorated with I:

IESIL.. ) ftry .o tn)ye = 7] (e y8y...) op
HESUPHL.. ... =] ,...)

Instantiation For any x € V, any decorated subterm s:
RIES]- - z,... = 7).y s,...) = HES][-. ;... 2 r{z = UD()}](...,...)

Replacement [t][0][— r]() +» DC(rd)
Activation [t][ES U {p}][— r]() w» t[DC(UD(t|p)5)]p

Fig. 2. Rules for lazy rewriting

Application For any decorated term ¢, any position p in YYD(t) and any rule | — r €

LR(t,p,l = 1) =t[SH(l = 7](t|p),p)]p if t|p is decorated with a
LR(t,pl—71)=t if t|, is decorated with !

Fig. 3. Lazy rewriting inside a term

Definition 4 (Lazy normal form). A decorated term t is said to be in lazy
normal form (LNF) w.r.t. R if there exists no decorated term t' such thatt~x t'.

Ezample 5 ([15]). Consider the following rewrite system (infinite list):

[r2] inf(z) = cons(z,inf(s(x)))

where £(2nd) = (e); L(inf) = {(e); L(cons) = (e, ).
The term t = 2nd; (inf{(0¢,)) is derived to its LNF as follows:
r2,1 a alna . rl,e
t ~ 2nd¢(consf (081, f1 5 (8L 2.1(082.1.1)))) ~

o e 2.1.2
2nd? (cons§ (081,41 5(5%.5.1(08.2.1.1)))) "~

.
2ndg (cons (07,1, conss 5(s¢ 5. 1(0¢.2.1.1),if1 25(81 221(88 221100 2.21.1.1))))))
"5 52(0%). In the second step, the essential subterm inf} 5(s} , (0% 5, ,)) is

activated.

R = { [r1] 2nd(cons(z, cons(y, 2))) =y

Remark 6. Let ¢ and t' be two decorated terms . If ¢ 5 # by applying the

l—r

Replacement rule, then UD(t) "= UD(t'). Otherwise, if ¢ N by applying
the Activation rule, then UD(t) = UD(t").



The next propositions show the relation between lazy rewriting and standard
rewriting in the same TRS.

Proposition 7. If the term t is in LNF w.r.t. R, then UD(t) is in HNF w.r.t.
R.

Proof. By induction on the size of ¢. If the size of ¢ is 1, then ¢ is a constant or
a variable: t is active and ¢ has no lazy subterm. Due to the definition of LNF,
UD(t) is in HNF. Suppose that the proposition is correct for all terms of size
from 1 to n — 1. We prove that it is also correct for a term ¢ of size n. The
size of the subterms of ¢ is less than or equal to n-1. Suppose that UD(t) is not
in HNF. That is, there exist a term s € Gx, and a rule | — r € R such that
UD(t) »% s and s matches with [ (*). Notice that the derivation from UD(t)
to s only contracts the redices below the root. Since ¢ is in LNF, all its active
subterms are also in LNF. By induction hypothesis, these subterms (after being
removed the decoration) are in HNF and their head symbols cannot be changed
by any derivation issued from UD(t) (**).

(*)(**) imply that the symbols which root the active subterms of ¢t match
with the corresponding symbols of [. In other words, ¢ matches modulo laziness
with  and ¢ is not in LNF (absurdity).

Since the active subterms of a LNF are also in LNF, all active subterms
(without decoration) of a LNF are in HNF.

Proposition 8. If there exists an infinite derivation to~g t1 ~R - .., then there
exists k € N such that UD(ty) ->r UD(ty).

Proof. A lazy rewrite step that terminates by applying the Activation rule
decreases strictly the number of lazy subterms in the term. Hence, there is no
infinite sequence of these lazy rewrite steps in a derivation. So, there exists a
smallest £ > 1 such that t;_; ~% t; by applying the Replacement rule. Due
to remark 6, we have: UD(tg) = ... = UD(tg—1) >R UD(t1).

A direct corollary of this proposition is that if standard rewriting w.r.t. R is
terminating, then so is lazy rewriting w.r.t. R for any laziness annotation of the
signature.

4 Thunkification

The thunkification of a TRS has been described in [8] for lazy graph rewriting.
Here we consider lazy term rewriting and we do not require the LHSs of the
original TRS to be minimal. This fact requires a small generalisation in the
proofs. Our thunkification works on the left-linear but possibly overlapping TRSs
where all lazy subterms of the LHSs must be a variable. In this case, no subterm
activation is possible in a lazy rewriting step since the lazy subterms always
correspond to a variable of the pattern. Thus, a lazy rewriting step finishes by
applying the Replacement rule and hence, a lazy rewriting derivation only
includes the terms in G2t



4.1 Thunkification Description

The thunkification extends the signature and generates a new TRS by which
innermost rewriting simulates lazy rewriting by the original TRS.

The new signature X' is built from the original signature ¥ = (W, F) by
adding new function symbols introduced during the thunkification: @, 7y, vecy,
vect, A, inst for every f € F and for some subterms ¢ of the RHSs of the rules
in the original TRS. The introduction of the new function symbols allows one
to mask the lazy subterms of a term. A lazy f—rooted subterm s is masked (or
thunked) by a subterm of form O(7y,vecy(...)) and hence, cannot eagerly be
rewritten. The structure of s is stored in this ©-rooted subterm so that one can
recover it later.

The thunkification of terms is a mapping ¢ : GR™® — Gy which is de-
fined by the rules in figure 4. We now describe the new TRS generated by the
thunkification.

Definition 9 (Lazy argument position and subterm). Let ¢t be a term in
Gsx:. If there exist p € FPos(t) and i € N such that Head(t|,) = f and 77{ =1,
then p.i is called a lazy argument position int whilst t|p.; is called a lazy argument
subterm of t.

Definition 10 (Migrant variable [8]). A variable that appears at a lazy argu-
ment position in the LHS of a rewrite rule and at an active position in a subterm
t of the RHS is called migrant in t.

The laziness property of a subterm which instantiates a migrant variable is
changed from lazy to active after the lazy rewrite step. Hence, we need to activate
lazy rewriting on such a subterm later.

Definition 11 (Set of rules). Let R be a TRS. The set of rewrite rules S
generated by applying the thunkification on R is the union of four subsets Sy,
S1, 82 and Sz which are defined as follows:

1. Sy contains the rule | — r' if and only if | = r € R and r' is built from r as

follows:
— In a bottom-up fashion, replace any lazy argument subterm t of the RHS
r by
O\, vec(x1,. .. ,Tn,)) where z1,... 2Ty, are all variables of t.

- Replace any migrant variable x of the RHS r by inst(z).
2. 81 = {inst(O(1p,vecs(x1,. .. s Zar(s)))) = f(tr,--- star(p)) | f € F} where
t; = inst(x;) if 7rzf = e; otherwise t; = x;.
3. Sz = {inst(O(A,vect(z1,... ,xpn,))) — t'|t has been replaced in 1 and t' =
t{z; — inst(z;)}Vi such that z; is a migrant variable of t}.
4. Sz = {inst(z) — z}.

In fact, So contains all the rules in R whose RHSs have been changed
(or thunked): every lazy argument subterm ¢ is thunked by a subterm of for-
m O(A,vecy(...)) and hence, t cannot eagerly be rewritten. A corresponding



rule is inserted into Sz in order to recover ¢ later. The insertion of a symbol inst
allows to rewrite afterwards on the subterm which has instantiated a migrant
variable. The unique rule of Sz allows to deal with a direct subterm which is not
thunked of a symbol inst. This rule has the lowest priority and hence, is the last
rule of S since we use the textual order.

In [8], only the non-variable lazy argument subterms of the RHS are thunked.
Since an innermost strategy will be used for rewriting by S, the subterms which
instantiate a variable of the RHS are in NF before the application of the rule.
In other words, the thunkification of the lazy argument subterms which are a
variable is unnecessary. However, in this work, we also thunk these subterm in
order to ensure the correctness of lemma 18 in section 5.

‘P(fg(th s 7tn)) = f(gﬂ(é(tl,p]., W{))’ s 7¢(¢(tnap-n7 7'r?Jfa)))
P(fptis. . tn)) w3 O(7s,vecr(p(t1pa), - - P(tnp.n)))

3. (k) w»c and p(ch) #» O(1e, vec,) if ¢ is a constant.

Fig. 4. Rules for ¢

The set of terms B is defined as follows:

B={geGs |3go€GE™ : p(g0) %9}

This definition of B is slightly different from [8] where gg is not thunked (by ¢).
The thunkification of gg helps to get the NF w.r.t. S more quickly. This fact is
used in our normalisation procedure in section 5.

L. ¢(9) =T(g,¢¢)

2. Y(inst(t),p,e)+» L (t,p,e)

3. Y(inst(t),p, 1) »» T (¢, p,1)

4. T( (Tf,UCCf(tl, tn))apae)"_»fp( (t1,p1 771), .- (tﬂ:pn 7Tn))
5. T(Q(Tfa Uecf(tl, - )) D, l) H_»fp(r(tlip 1 l) T(t"’p n, l))

6. T (O(r,vece),p, e )H—»cg if ¢ is a constant.

7. Y(O(7e,vece),p, 1) w» ch if ¢ is a constant.

8. T (O(As,vect(tr, ... tn,)),p ) L (t{z1 — t1} ... {xn, = tn, },p,€)
9. Y(O(A,vec(tr, ... ytn,)), 0, D) » T (t{z1 = t1} ... {20, — tn, }, 0, 1)
10. Y(f(ts,-.. ,tn),p e) v f2(X(t1,p 1, 7)), ..., Y (tn, pn, 7))
11. T(f(th s ,tn),p, l) = f]lJ(T(tlapla l)a cee aT(tnyp-n! l))
12. Y(c,p,e) #»c; if ¢ is a constant.
13. Y(c,p,1) w»cp if ¢ is a constant.

Fig. 5. Rules for ¢

The mapping ¢ : B — G relates the terms in B and the terms in GBin#
and is defined by the rules in figure 5. In reality, ¢ recovers the lazy subterms
using the informations stored in their corresponding ©—rooted subterms.



4.2 Correctness of Thunkification

The lazy rewriting of the terms in G2 y.r.t. R can correctly be simulated
by the innermost rewriting in a subset B of Gx w.r.t. S via ¢ up to the cri-
teria figured in [12]. That is, ¢ is surjective, sound, complete and termination
preserving. ¢ is surjective since for every term g in G2 : ¢(p(g)) = g. In the
following, —s denotes the innermost rewriting relation w.r.t. S.

Theorem 12 (Soundness [8]). Let g be a term in B. If g —s g' then ¢(g) ~% ¢(g')-
More precisely: g —s, 9' = ¢(g)~r #(¢9') and g —s,us,0s: 9' = ¢(9) = d(9').

Lemma 13 ([8]). If g € B contains no symbol inst, then each active subterm
of ¢(g) inherits the head symbol from its corresponding subterm of g.

Theorem 14 (Completeness [8]). If g € B is in NF w.r.t. S, then ¢(g) is in
LNF w.rt. R

Theorem 15 (Termination preservation [8]). If there exists an infinite
derivation go —s g1 —s - - -, then there exists k € N such that ¢(go) ~r ¢(gx)-

Corollary 16. If lazy rewriting w.r.t. R is terminating, then so is innermost
rewriting w.r.t. S.

4.3 Correspondence of Trace

We show in this section that a (lazy) normalisation trace of ¢(g) w.r.t. R can
be extracted from a normalisation trace of g w.r.t. S. Suppose that each rule in
So inherits the label from its corresponding rule in R, we have:

Theorem 17 (Correspondence of trace). Assume that T3 is the normalisa-
tion trace of a term g € B w.r.t. § in an innermost reduction strategy. Extracting
from ’]I‘;f the traces of the rewrite steps performed by a rule in So yields a (lazy)
normalisation trace TZf(g) of ¢(g) w.r.t. R.

5 Normalisation Procedure

A term can be normalised by reducing sequentially all its subterms into HNF.
Suppose that we need to normalise a term t by a left-linear and terminating TRS
R. The thunkification process is first applied on R to get the TRS S. Next, ¢
is thunked and normalised w.r.t. S to get g as a NF. Due to the rule in S3, g
contains no symbol inst. Completeness implies that ¢(g) is in LNF w.r.t. R. In
other words, all active subterms of ¢(g) are in HNF w.r.t. R and inherit the head
symbol from the corresponding subterms of g (lemma 13). Furthermore, in ¢(g),
an active subterm is never a subterm of a lazy subterm. In other words, ¢(g) can
be divided into two parts: the upper part contains the active subterms whilst
the lower part contains the lazy subterms. Hence, the upper part of g contains
the subterms which correspond to an active subterm of ¢(g) and which are in



HNF w.r.t. R. The lower part of g correspond to the lazy subterms of ¢(g). The
frontier between these two parts is composed by the symbols @ (lemma 18).

Thus, we can unthunk (activate) the @-rooted subterms and reduce them into
NF w.r.t. S. By this reduction, some more subterms of g become in HNF w.r.t.
R. Notice that if a @-rooted subterm is activated, then its “active” subterms
are also unthunked. The activating procedure of a @-rooted subterm will be
described later by the operator ¢*. The process is recursively applied until all
subterm of g are in HNF w.r.t. R and g is a NF of ¢.

Lemma 18. Let g be a term in B and g contains no symbol inst. Then g is
divided into two parts. The upper part contains the subterms which correspond
to an active subterm of ¢(g) whilst the lower part contains the subterms which
correspond to a lazy subterm of ¢(g). The frontier between these two parts is
composed by the symbols ©.

Let g be a term in Gx+. We define the set of disjoint ©-ancestor positions of
g as follows:

Pia(9) = {p| p € FPos(g), Head(g|p) = © and Head(g|,,) # O for every prefix

p1 of p}

Pia(g) can be computed by rules in figure 6. Intuitively, Pj,(g) contains the
frontier between two parts of g. The activating operator ¢* is a mapping from
G to Gy and is defined by the rules in figure 7: ¢* activates (or unthunks) a
O—rooted term g and every @—rooted subterm s of g such that ¢(s) is an active
subterm of ¢(g). Figure 8 describes the normalisation procedure based on lazy
rewriting (norm(t, R)).

Initialisation Pi,(g) = La(g,¢€)

Symbol La(f(t1,--.,tn),p)#» La(ti,p.1)U...U La(t,,p.n)if f € F.
Constant La(c,p)#» () if ¢ is a constant.

Discovery La(O(t1,t2),p)»{p}

Fig. 6. Rules for Gj,(t)

. d)*(@(Tf’ UECf(tl, cee ,tn))) = f(w(tli 7‘-{): v ,W(tn, 7'('7):))
. " (O(A,vect(ti, . .. ytny))) e t{x1 — t1} .. {Tn, & tn, }
. @"(O(1¢,vece)) w»c if ¢ is a constant.

U(t,e)w» @™ (t) and ¥(t,1)w»t

._-hoom»—n

Fig. 7. Rules for ¢~

Theorem 19. IfR is terminating and fulfills all necessary conditions for thunki-
fication, then the procedure norm(t,R) is also terminating and yields a NF of t
w.r.t. R.



procedure normalise(g € Gs1,S)

1. g is normalised in the leftmost-innermost strategy w.r.t. S to get its NF g,
2. if there is no symbol @ in g, then return g, else for all p € Pio(gny):
$:=0" ((gnf)lp); (gns)|p:=normalise(s,S)

procedure norm(t € Gz, R)

Build § = S US1 US2 US3 from R
g9 := ¢(DC(t))

tnf := normalise(g,S)

return i,y

=W e

Fig. 8. The normalisation procedure of ¢t w.r.t. R

Remark 20. The normalisation of a term ¢ by procedure norm(t, R) generates
a trace Ty which is the list of the traces of all performed (leftmost-innermost)
rewrite steps. Let us extract from T; the pairs whose the first element is the label
of a rule in 8. Due to theorem 17, this process yields a normalisation trace T}
of t in R (in the sense of standard rewriting).

6 Preliminary Transformation

In this section, we present a transformation that allows to eliminate all non-
variable lazy argument subterms and hence, all non-variable lazy subterms of
the LHSs. Our transformation works on the (left-linear) constructor-based TRSs.
It is proved to be correct and to preserve a good correspondence between the
normalisation traces in the original and transformed TRSs.

6.1 Transformation Description

Let R be a left-linear constructor-based TRS. Suppose that p.i is a non-variable
lazy argument position in the LHS of a rule I; — r € R and Head(l5|,) = f. We
activate this position by adding a new function symbol f? of arity ar(f) where
WF = ﬂf if j # i and ﬂ{ ¢ = e and by transforming [, — r which is called the
source rule as follows:

- Replace it by the rule l; — r where I; is I; but Head(l;|,) = fP. This rule
is called the transformed rule.

- Add a new rule l;[z]p.; — li[z]p.; where z is a fresh variable to R such that
this rule has the lowest priority in case of overlapping. This rule is called the
added rule.

All other rules of R are unchanged. This process is called a transformation

step that eliminates one non-variable lazy argument subterm of a LHS of R.



Example 21. Consider again the TRS in example 5. Applying the transformation
on the rule r1 (source rule) yields the following TRS:

[r¢] 2nd(consl(z,cons(y,z))) — (Transformed rule)
S=1{[r2] inf(z) = cons(x inf(s(z)))
[ra] 2nd(cons(z,z')) = 2nd(consl(z,z')) (Added rule)

where £(2nd) = (e); L(inf) = {e); L(cons) = {e,1); L(consl) = {e,e).

Denote by S the new TRS generated by one transformation step. X' is the
new signature (X’ = (V,F U {fF})). The set of terms B is defined as follows:

B = {g € gg,term| 390 € ggterm . gO’\”jg g}

The mapping ¢' : B — GRt™™ relates the terms in B with the terms in GBterm;
¢'(g) is built by replacing every symbol f? in g by f. Furthermore, the laziness
annotations of the subterms of g and ¢'(g) are kept identical.

We call ¢'(g) the simulation of the lazy rewriting of the terms in GBterm
w.r.t. R by the lazy rewriting of the terms in B w.r.t. §. Obviously, § is also
constructor-based and left-linear. That is, the transformation can be repeated
until the LHSs contain no non-variable lazy argument subterm. Our transfor-
mation is terminating since after each step, the number of non-variable lazy
argument subterms of the LHSs is strictly decreased.

6.2 Correctness of Preliminary Transformation

The correctness of the overall transformation process can be deduced from the
correctness of each transformation step up to the criteria figured in [12]. ¢’ is
obviously surjective, since it is the identity mapping on the subset GRt™™ of B.

Theorem 22 (Soundness). Let g be a term in B. If g~ s ¢' then ¢'(g) ~r ¢'(¢').
More precisely: if g~s g' by applying the added rule or the transformed rule,
then ¢'(g) ~r ¢'(g9') by applying the source rule at the same position. Other-
wise, ¢'(g) ~r ¢'(9") by applying the same rule at the same position.

Remark 23. If g ~s ¢' by a rewrite step using added rule, then UD(¢'(g)) =
UD(¢'(g')). Hence, if we only interest in the non-decorated terms as in standard
rewriting, then this step is redundant.

Theorem 24 (Completeness). If g € B is in LNF w.r.t. S, then ¢'(g) is in
LNF w.r.t. R.

Corollary 25 (Correspondence of trace). Let T, be a (lazy) normalisation
trace of a term g € B w.r.t. S. Replacing the labels of the added rule and the
transformed rule in T, by the label of the source rule, yields o (lazy) normalisa-
tion trace of ¢'(g) w.r.t. R.



Ezample 26. In example 21, term ¢t = 2nd(inf(0)) is normalised w.r.t. S as fol-
lows : 2nd(inf(0)) Y 2nd(cons(0,inf(s(0))) "4 2nd(consk(0,inf(s(0))) TR
2nd(const (0, cons(s(0),inf(s(s(0)))))) <& s(0).

In the generated trace TY = {(r2,1);(r,,e);{r2,1.2); (r,€)}, replacing ry
and r, by rl yields a (lazy) normalisation trace of term w.r.t. R : TR =
{{r2,1); (rl,e); {(r2,1.2);(rl,€)}

Theorem 27 (Termination preservation). If there exists an infinite deriva-
tion go~s g1~s - - -, then there exists k € N such that ¢'(go) ~r &' (gk)-

7 Combining Two Transformations

We describe in this section, the combination of the thunkification and the pre-
liminary transformation above. If the LHSs of the considered TRS (R) has no
non-variable lazy subterms, then the sole thunkification is sufficient. In order
to get a normalisation trace of a term ¢, we use the normalisation procedure
described in section 5. Otherwise, the preliminary transformation is used to e-
liminate the non-variable lazy subterms of the LHSs. The new TRS (S) generated
by this transformation is then, transformed by the thunkification. Suppose that
the normalisation procedure yields a trace T;. Due to remark 20, one can extract
from Ty the trace TY of the corresponding (lazy) derivation by S. Replacing the
added rules and the transformed rules in S by their source rules in R, one gets
TP which is the trace of the corresponding (lazy) derivation by R.

Nevertheless, due to remark 23, the rewrite steps by the added rules are
redundant since our goal is to get a normalisation trace in the sense of standard
rewriting. Therefore, we need to refine our trace by eliminating these redundant
steps. This refinement should be done on T¢ before generating T/ which is now
the normalisation trace of ¢ w.r.t. R in the sense of standard rewriting.

Ezample 28. We illustrate our method by considering the TRS (R) in example 5.
The thunkification cannot be directly applied on R since the LHS of r1 contains
the non-variable lazy subterm cons(y, z). Using the preliminary transformation,
we get the TRS § in example 21. This TRS fulfills all necessary conditions for
the thunkification which will give the following TRS:

( [re] 2nd(const(z,cons(y,z))) =y
Uo =< [r2] inf(z) = cons(@, O(Ning(s(z) V€Cins(s(x))(%))))
[ra] 2nd(cons(z,z')) = 2nd(consl(z,inst(z")))
[r11]  inst(O(Tcons, VeCeons(T,Y))) — cons(inst(z),y)
U=y U — [r12] inst(O(Ting, vecing (x))) — inf(inst(z))
17 [r13] inst(O(Tang, vecanq(x))) — 2nd(mst( )
[r14] inst(O(Teonst, VeCeonst (2,4))) = consy(inst(x),inst(y))
U2 = {[r21] mst(@()\mf(s(z)),vecmf(s(z))(ﬂf)))) - mf( ()
Us = {[r31] inst(z) = x

Consider the term ¢t = 2nd(inf(0)). We normalise ¢(t) = 2nd(inf(0)) w.r.t. U
by the following leftmost-innermost derivation:



2nd(inf(0)) 25" 2nd(cons(0, O (Ains(s( 0),vecmf(s(o»< ) oy
2nd<con L(0, in5t(O(Ninj (s(0) s VeCins (s(0y) (0))))) "= 2nd(cons} (0, inf(5(0))))

2nd(cons (07 COHS(S(O), @()‘z’nf(s(o)aUecz'nf(s(O))(s( ))))))) Tt_}f S( )

$(0) contains no symbol @ and hence, the normalisation procedure finishes
and return this term as a NF of ¢ w.r.t. S. Due to Soundness of the preliminary
transformation, s(0) is also a NF of ¢ w.r.t. R. Thanks to theorem 17, one
can extract from the normalising derivation above a normalisation trace of ¢
w.r.t. 8: TS = {{r2,1); (ry, €); (r2,1.2); (ry, €)} (only the rewrite steps performed
by a rule in U figure in T¢). Finally, we eliminate the steps by the added
rule (r,) and replace the transformed rule (r;) by its source rule (r1) to get
a normalisation trace of ¢ w.r.t. R (in the sense of standard rewriting): TS =
{{r2,1); (r2,1.2); (r1,€)}. Notice that applying an innermost strategy on ¢ using
the rules in R leads to an infinite reduction.

8 Related Works

Lazy rewriting can be obtained in OBJ [9] and CafeOBJ [6] using the operator
evaluation strategy (E-strategy) where each operator (function symbol) has its
own evaluation order. There are two suggested ways to simulate lazy rewriting
by E-strategy: (1) omit the lazy arguments from the local strategy of its function
symbol or (2) use the negative integers for these arguments. The first method
does not behave well if there are some non-variable lazy subterms in LHSs as
in example 5, where the second argument is omitted from the local strategy for
cons. However, such a strategy reduces 2nd(inf(0)) to 2nd(cons(0,inf(s(0))))
instead of s(0) since the subterm inf(s(0)) is not allowed to be reduced and r1
cannot be applied.

The second method is implemented in CafeOBJ using the on-demand flag [18].
A negative integer —i in the local strategy given to a function symbol f means
the 3" subterm of f is forced to be rewritten if and only if it causes the conflict
during pattern matching. In example 5, the local strategy of cons is (1 -2 0) and
2nd(inf(0)) is derived as follows: 2nd(inf(0)) "= 2nd(cons(0,inf(s(0)))) ">
2nd(cons(0, (cons(s(0),inf(s(s(0))))))) e 5(0). In the second rewrite step, r1
is tried with the term 2nd(cons(0,inf(s(0)))). The subterm in f(s(0)) causes the
conflict and hence, it is forced to be rewritten. The E-strategies that can reduce
a term to its to HNF is characterised in [15] for the left-linear and constructor-
based TRSs. The on-demand flag in CafeOBJ is similar to the “essential node”
notion and the thunkification has the same limit with the first method above.
The preliminary transformation allows us to overcome this limitation for the
left-linear and constructor-based TRSs.

Context-sensitive rewriting [14] can be seen as a restricted case of lazy rewrit-
ing where the subterm activation is not allowed. In order to simulate correctly
standard rewriting by context-sensitive rewriting, one needs to use a canonical
replacement map which is equivalent to the condition that all lazy subterms of



the LHSs must be a variable. In other words, context-sensitive rewriting shares
the same limit with the first method above.

9 Conclusion

In this paper, we described lazy rewriting and the mechanism of thunkifica-
tion under a rule-based form. We showed the relation between the normalising
derivations in the TRSs before and after the thunkification and proposed a nor-
malisation procedure based on lazy rewriting. A preliminary transformation that
allows to extend the application scope of the thunkification method whilst pre-
serving the correspondence between the normalisation traces was also presented.

The optimal derivation is undecidable in general [16] [11] and even when it is
decidable, the decision procedure is complicated to implement. In practice, most
interesting results only involve the orthogonal constructor-based TRSs [20] [2] [21].
We think that our normalisation procedure is helpful since the normalisation pro-
cedure is reasonably efficient in ELAN, thanks to the correct simulations, whilst
the generated trace is more compact and still useful for Coq, thanks to the
nice correspondence between the normalising derivations before and after each
transformation. Moreover, the TRSs are allowed to be overlapping.

A natural question may rise: which arguments should be marked lazy in each
function symbol ? There is no general answer, but intuitively, the variables that
appear in the LHS but not in the RHS of the same rule should be lazy. Thus,
in an if-then-else construction like {i f(true,z,y) — =; if(false,z,y) — y}, the
two last arguments of 4 f should be lazy. If all variables in the LHS also appear in
the RHS, then all redices are necessary and lazy or outermost strategies do not
give a shorter derivation than innermost strategies. Furthermore, the variable
marked lazy should not appear more than once in the RHS since this duplicates
the reduction of the terms which will instantiate this variable. In such cases,
sharing is required with lazy rewriting. In our work, sharing is only helpful if it
is implemented in both Coq and ELAN sides. This requires some extensions in
Coq replaying procedure and ELAN compiler that we are investigating.
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