HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

Thue equations with composite fields

Yuri Bilu 1 Guillaume Hanrot 2
2 POLKA - Polynomials, Combinatorics, Arithmetic
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : We consider the Thue equation $F(x,y)=a$, where $F$ is an irreducible form of degree $n\geq 3$.We describe a method of resolution which takes advantage of the fact that the number field generated by a root of $F(1,y)$ has small subfields. We illustrate this method by solving several real cyclotomic equations of degrees as large as 2505. || Considérons l'équation de Thue $F(x,y)=a$, avec $F$ une forme irréductible homogène de degré $n\geq 3$. Nous décrivons une méthode de résolution permettant de tirer profit de l'existence de petits sous-corps du corps de nombres engendré par une racine
Document type :
Journal articles
Complete list of metadata

Contributor : Publications Loria Connect in order to contact the contributor
Submitted on : Thursday, October 19, 2006 - 3:40:29 PM
Last modification on : Friday, February 4, 2022 - 3:32:37 AM


  • HAL Id : inria-00108051, version 1



Yuri Bilu, Guillaume Hanrot. Thue equations with composite fields. Acta Arithmetica, Instytut Matematyczny PAN, 1999, 88 (4), pp.311--326. ⟨inria-00108051⟩



Record views