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Multiscale Autoregressive Models and Wavelets

Khalid Daoudi, Austin B. FraktStudent Member, IEEEand Alan S. Willsky,Fellow, IEEE

Abstract—The multiscale autoregressive (MAR) framework The crux of the problem, which this paper resolves, hinges on
was introduced to support the development of optimal multiscale the particular properties that useful MAR processes possess.
statistical signal processing. Its power resides in the fast and One such property, which is very similar to wavelet recon-

flexible algorithms to which it leads. While the MAR framework tructi is that the fi i le si | of MAR
was originally motivated by wavelets, the link between these two struction, ‘1S that the Tinest-scale signal of an process

worlds has been previously established only in the simple caselS formed from a coarse signal by successively adding detail.
of the Haar wavelet. The first contribution of this paper is to  Specifically, the MAR framework provides amplicit second-

provide a unification of the MAR framework and all compactly  order statistical model for a fine-scale signal by creating a

supported wavelets as well as a new view of the multiscale 4y namically coupled hierarchy of vector-valued signals above
stochastic realization problem. The second contribution of this y . y _p .y 9
the fine-scale signal (see Fig. 1).

paper is to develop wavelet-based approximate internal MAR : ; A
models for stochastic processes. This will be done by incorpo- The coarse-to-fine dynamics of an MAR process:) =
rating a powerful synthesis algorithm for the detail coefficients {z;(n) | j = 0,1,---,J, n = 0,1,--.,27 — 1}, for some

which complements the usual wavelet reconstruction algorithm integer./, are analogous to those of a state-space model
for the scaling coefficients. Taking advantage of the statistical

machinery provided by the MAR framework, we will illustrate zj(n) = A;(n)x;—_1([n/2]) + w;(n) (1)
the application of our models to sample-path generation and o ) ) _ _
estimation from noisy, irregular, and sparse measurements. where[-] indicates the integer part and;(n) is white noise

Index Terms—Fractional Brownian motion, graphical models, with auto-covarianc€);(n) (see Fig. 1 for a concise summary

internal models, multiscale estimation, multiscale models, sto- ©f our indexing notation). Note, however, that (1) is more
chastic realization, wavelets. general than a classical state-space model becausesd{ere,
is indexed by the nodes afytree rather than by the integers
which form a monadic tree. We call the vectoi(n) an MAR
state.

N THE last two decades, multiresolution decomposition The form of (1) suggests that MAR dynamics can be made

techniques, such as the wavelet transform, have been widglymimic those of the wavelet reconstruction algorithm. This
and successfully applied in signal processing. This is due baths been previously shown only in the case of the Haar wavelet
to their ability to compactly capture the salient scale-to-scgg1]. We will show that through a particular definition of the
properties that many signals exhibit and to the efficiency efate vector;(n), the MAR dynamics can be chosen to match
the algorithms to which they lead. With both of these attraghe reconstruction algorithm associated withy compactly
tive features in mind, the multiscale autoregressive (MARupported orthogonal or biorthogonal wavelet. We emphasize,
framework was introduced [5] to support the developmenbwever, that signal synthesis is not our purpose. Instead,
of optimal multiscale statistical signal processing. Like theodelingis our objective. Specifically, given the statistics of a
wavelet transform, MAR processes are recursive in scale arglhhdom signal, which we view as indexed by the leaf nodes of
due to the nature of the scale recursion, fast statistical sigaalree, we focus on building an MAR model to capture those
processing algorithms (sample-path generation, linear leggien statistics with high fidelity.
squares estimation, likelihood calculation) for MAR processes A particular class of MAR processes we are going to focus
exist. The power of the MAR framework resides in its abilityyn areinternal MAR processes. While we will elaborate on
to simultaneously address several complications which arisetfie notion of internality later, briefly an internal MAR process
a variety of signal processing applications. For instance, tReone for which the state at every nédg,n) is a linear
data sets can be large, the processes to be estimated cafuietional of the states which reside at the fine-scale nodes
nonstationary, the measurements may be irregularly spacetlich descend fronfj, »). In general, there are no constraints
nonlocal, and corrupted by nonstationary noise. on how the MAR states should be defined, but internality is a

Despite the apparent similarities between wavelets and fh@perty which is very useful for many reasons. First, internal
MAR framework, it seemed that the two could not be easilyodels are intellectually important in the context of statistical
reconciled except in the simplest case of the Haar wavelgiodeling and are widely used in stochastic realization theory

Manuscript received March 1, 1998. This work was supported by thQr tlm.e—senes.[3.0]. It is, therefore, natural to consider th?
Office of Naval Research under Grant N00014-91-J-1004, the Air For@Xtension of this idea to the context of MAR processes as is
Office of Scientific Research under Grant F49620-98-1-0349, and by INR#one in [24]-[28].
Rocquencourt, France.

The authors are with the Laboratory for Information and Decision Systems,In this paper, we will assume without loss of generality that all processes
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-malfe consider are zero-mean.

daoudi@lids.mit.edu). 2We will use the notatior(j, n) to refer to the node of a dyadic tree at
Publisher ltem Identifier S 0018-9448(99)02268-3. scalej and shiftn.

I. INTRODUCTION
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Fig. 1. An MAR process on a dyadic tree. The root node stateyi®). The parent of state j(n) is xj_i([n/2]), while its children arex;(2n)
and .77‘]'_5_1(277, + 1).

Second, in many applications there is a need to fuse meaoosing the linear functionals from a wavelet basis since they
surements taken at different scales [15]. Frequently, the nonl@ve nice decorrelation properties.
cal coarse-scale measurements in a multiscale measurement 8ur main objective, after showing how to unify the MAR
are linear functionals of the finest scale variables (e.g., tomand wavelet frameworks, is to build approximate internal
graphic measurements). Since internal MAR models include$\R models for stochastic processes. To do so, we use the
coarse states nonlocal functions of the finest scale, they allstatistics of the process to be modeled to derive the dynamics
efficient fusion of nonlocal and local measurements with naf our internal MAR-wavelet models. While wavelets have
increase in complexity as compared to the case of fusing omlice decorrelation properties, the decorrelation they provide is
fine-scale data. not exact in general. Therefore, our MAR models based on

Finally, as we will see, internality provides a convenienvavelets are approximate. This does mean that we assume
parameterization of the information content of the MAR statem our internal models that the detail coefficients are white. In
Using this parameterization leads to MAR dynamics thdact, while (for comparison purposes) we do make this assump-
incorporate a powerful optimal prediction of a child state frortion for what we shall call the standard MAR-wavelet models,
its parent. This optimal prediction will have important anaur internal MAR-wavelet models are more sophisticated. In
significant consequences for our ability to accurately modgérticular, they incorporate the powerful property of optimal
signals using MAR processes based on wavelets. stochastic prediction for the detail coefficients at a given scale

In the early attempts to marry MAR processes and waveletsom both detailand scaling coefficients at coarser scales.
it was incorrectly thought that the internal property doomethis is different from the common wavelet-based modeling
the union in all but the Haar case. This is because for @il which the detail coefficients are assumed to be white. In
but the Haar wavelet, the supports of the wavelet functioosir internal models, we make the weaker assumption that the
overlap. We will show the connection between the overlappimgedictionerrors are white. This assumption is the reason why
of the wavelet functions and the internal property and illustrateir models are approximate.
how the nonoverlapping property of the Haar wavelet permits Another property that an MAR process must posses is low
its simple union with the MAR framework. After proving state dimensionality. This is because sample-path generation,
some particular relationships between wavelet coefficients ditkar least squares estimation [7], [8], and likelihood calcu-
through appropriate state augmentation we show how to bulédion [31] for MAR processes all have complexity which is
internal MAR processes based on any compactly supportgalynomial in state dimension (and linear in the number of
wavelet. fine-scale nodes).

An important property that MAR processes possess is wide-We will see that the state dimension of our MAR-wavelet
sense Markovianity. This MAR “Markov Property,” as wemodels grows only linearly with the lengths of the support of
shall call it, is a generalization of the wide-sense Markovianithe scaling functions, which are related, in some cases, such
of state-space processes. For a state-space process, the prasemthogonal wavelets, to the number of vanishing moments
is a boundary between the past and future in that it condif the analyzing wavelet. However, the fact that wavelets
tionally decorrelates them. Analogously, for an MAR processiith a large number of vanishing moments do a good job
the node(j,n) is a boundary between the subtrees extendimg whitening and stationarizing a large class of processes
away from it; the values of the MAR process indexed by the$g], [22], [29], [35], [37], [39], doesnot imply that the
subtrees are mutually conditionally decorrelatedcbn). The degree of statistical fidelity of our internal models necessarily
Markov Property means that (n) summarizes all the relevantincreases with the number of vanishing moments. This is
stochastic properties of one subtree leading frgim) for because we are not exclusively concerned with the correlations
optimal statistical reasoning about the other subtrees leadlmgfween wavelet coefficients, but rather with tenditional
from (j,n) and therefore justifies our terminology in callingcorrelation between them (in order to approximately satisfy
x;(n) an MAR state. For internal MAR processes, the Markothe Markov Property). Therefore, as will be illustrated, with
Property is equivalent to the fact that the linear functionaisternal MAR-wavelet models, it is possible to build accurate
which define the states fulfill the conditional decorrelatiomodels using wavelets with fairly short supports and, thus,
role just described. This provides part of our motivation fawithout dramatically increasing the state dimension.
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Throughout this paper, we will use fractional Browniartapture contexts describing statistical features. These models
motion (fBm) as a vehicle to support our results. In padiffer from ours in that they include hidden variables and are,
ticular, we will apply our internal MAR-wavelet models totherefore, necessarily not internal. Nevertheless, these models
generating fBm sample-paths and, more importantly, to tladso lead to very powerful and efficient algorithms for signal
problem of estimating an fBm from noisy, irregular, and sparsad image processing.
measurements. The remainder of this paper is organized as follows. In

In the context of the previous work on MAR processes, thBection Il we review the MAR framework. In Section Il we
paper provides a unification of wavelets and MAR processe=view the essential elements of wavelet theory and introduce
as well as a new view of theultiscale stochastic realization the MAR—Haar process. In Section IV we show how to build
problem This problem is to design coarse-scale states to math internal MAR-wavelet process based on any compactly
the given fine-scale statistics. Previous approaches to the naulpported wavelet. In Section V we build approximate MAR-
tiscale stochastic realization problem focussed on designiwwgvelet models for random signals. The conclusion and a
MAR states to, in some sense, optimally match the statistidscussion of open questions for future work are in Section VI.
of the finest scale process being modeled [23]-[28]. As a
consequence, the resulting states typically have no discernible I
structure beyond the fact that they represent solutions to
specific optimization problems. MAR processes are tree-indexed stochastic processes. For

Our approach differs in that the design of our MAR statdfe purposes of this paper it is sufficient to consider only
is not closely tied to the intricate details of the fine-scaldyadic trees. Our notation for referring to nodes of a dyadic
statistics. Our philosophy which, in part, motivated this work i§€€ is indicated in Fig. 1. There is a natural notion of scale
to restrict the class of linear functionals that define the staf@gsociated with dyadic trees. The root node represents the
of an internal MAR process to the small but rich class ¢foarsest scale which we denote as scale zero. The children of
wavelet bases. We thus force the states to contain meaningfl@ root node represent the first scale. Continuing, leaf nodes
multiscale representations of the fine-scale process and aveistitute the finest scale which we denote as.itfe scale.
the computationally burdensome search over all possible lind¥g Will denote byz; the stacked vector consisting of (n)
functionals. forn =0,1,---,2/ — 1, i.e, the finest scale subprocess.

On the other hand, our approach is similar to the previousAS mentioned, an MAR process has a Markov Property:
work on the multiscale stochastic realization problem in thitis @ (wide-sense) Markov random field on a tree [7]. This

we use the fine-scale statistics of the process to be modeled/@kov Property leads to fast statistical signal processing algo-
derive the dynamics of the MAR model. rithms. For instance, sample-path generation (with complexity

There are at least two other frameworks [9], [20] thefuadratic in state dimension and linear in the number of finest-

propose unifications of multiscale stochastic processes aif@le nodes) is accomplished using (1). Also, a linear least
wavelets, both of which are different from ours in significartduares estimator [7], [8] and likelihood calculator [31] have
ways. To fully contrast [9] and [20] with our work requireso€en developed based on a measurement model

a longer discussion than space constraints permit. Therefore,

we focus on the main points and refer the reader to [9] and yi(n) = Cj(n)x;(n) +vj(n). (2)

[20] for details. The first [9] develops decoupled dynamic ] . )

wavelet systems that support a fast estimation algorithm whos@e Zero-mean white noise; (n) has auto-covariancé;;(n)
structure takes the form of a set of monadic trees in scale. T is uncorrelated with the MAR procéss(-) and the
second [20] generalizes the work in [9] to wavelet packets aRfecess noisev(-). The estimator and likelihood calculator
develops a fast estimation framework whose structure takg&ve computational complexity cubic in state dimension and
the form of a set of dyadic trees. There are several differend&$ar in the number of finest-scale nodes.

between these approaches and ours. The first is that in [9] and\n important subclass of the class of MAR processes are
[20] it is assumed that the detail coefficients are white our internal MAR processes. As stated in Section_l, an internal
internal models, we make no such assumption. The secd@R process is one for which each statg(n) is a linear

is that to perform estimation in the frameworks of [9] andnction of the portion ofz; indexed by finest scale nodes
[20], the data must be transformed into the wavelet domaiffhich descend fron(j,n).. Therefore, ifz(-) is an internal
Therefore, there is no way to handle sparse or irregulffAR process we can write

measurements which our framework can handle easily. Lastly,

. MAR PROCESSESBACKGROUND

the models of [9], [20] are only interesting in the noninternal zj(n) = Wj(n)zy. 3)
context. Under an internality assumption, they collapse to a ) ) _
trivial case. We will call W;(») an internal matrix As shown in [23]

There exist other wavelet-based tree models such as th88€ [24], a necessary and sufficient condition to fulfill (3)
in [6], [12], and [13]. In these models, the key wavelels for each state;(n) to be a linear function of ;1 (2n) and
coefficient dependencies are captured using hidden Markbis1(2n + 1), the states which reside at the children nodes
models (HMM’s). In particular, these HMM's are used t®f (j,n). Notice that this fact imposes some constraints on

3Moreover, the approaches in [9] and [20] assume a particular model while*We will use the notatione(-) and w(-) to refer to x;(n) and w;(n),
we construct one. respectively, for allj andn.
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the form of W;(n) and thus onz;(n). The internal matrices linear function of its children states, a deterministic fine-
cannot be arbitrarily and independently defined but are coupledcoarse relationship. That is, for some matfix(n) we
so as to arrive at an internal process [23], [24]. have z;(n) = Vj(n)[m’_”jj(ﬁi)m]. That the driving noise
The concept of an _internal process was first introduced in tbffﬂ(%) andwj+1(2n+jl) are uncorrelated and that(n) is
state space time-series modeling literature [2]-[4], [19]. In thgsterministically related ta,;41(2n) andz; 1(2n+1) is not

time-series modeling context, internal models are of intenggntradictory because by construction [i.e., using (4)—(7)], the
interest because they constitute a class of processes whicfjge vector| w;1(2n) ] is in the null-space o¥/;(n) [24].

. . .. . . W 1(2n+1)
rich enough to includeminimal models (i.e., those with the In this paper,+our primary interest is theultiscale stochas-

smallest possible state dimensions). While this is not the cage 1 ji»ation problem(hereafter called simply the realiza-

for internal MAR models (i.e., a minimal MAR model may NO%ion problem). The realization problem is to build an MAR

ts)g\l/oer;;toc:gs f;iig; 'Cvtﬁ mv?llen;?g?:%rgh;;% éilgei,nrt]gr?:;tlhl(\a/ll cess such that the fine-scale realized covariance m&ijx,
9 y tches a specific desired covariance matrix which we will

processes. As mentioned in Section I, internal processes gle : . . :
) T . ote byP;. Of particular interest to us is the decorrelation
of both intellectual and practical interest. First, the theory for Yrs b

internal MAR processes is well-developed and provides tr{{]éle that the linear functionals [the rows &F;(n)] play in

. . . . . e realization problem. To achievE; = Py, the linear
firm foundation upon which our work is built. Indeed, man . : )

. . . unctionals which define the states of the MAR process must
of the concepts relating to internal processes developed in the . . .

re&fesent enough information to satisfy the Markov Property.

state-space context have been generalized to MAR proce . Y :
P 9 P ﬁﬁowever, for many problems this requires impractically large

in [23]-[28]. tate di i lting i dels which t ful
Second, while noninternal MAR processes can be coE.-ae IMENSIONS, resulting in models which are not usetu

structed, their states have exogenous random component egause of the high computational burden of sample-path

property that is not suitable in many problems. In Comrasq,eneratlon, estimation, or likelihood calculaﬂ_on. .
dThere are several ways to overcome this computational

internal processes consist of states which are linearly relat : )
E@rltleneck. One way is to start with an exact model and

a property that is essential to address certain problems, X : X
instance when one wishes to estimate coarse-scale states wiER 0 reduce the state dimensions by throwing away some

are, in fact, local averages of a fine-scale signal. In additic, € linéar functionals which define the states [23]-[28].

with internality we can make clear the tie of the MARONe can then compute the dynamics of an MAR model by
framework to wavelet analysis. taking Fhe resultl-ng reducgd row-d|m§n5|on |_nternal matrices
Finally, internal processes provide a convenient paramet8fid Using them in (4)—(7) in whicF is substituted for?;.
ization for the MAR dynamics. From the internal matriced® consequence of reducing the state dimensions is that the
the dynamics are related in a simple way to the covariantd@rkov Property becomes an approximation and the resulting
of the fine-scale proce3s; £ E[z;z7]. The key to seeing Model is not exactP; # Py). _
this is recognizing that (1) represents the linear least square§0r €xact internal models, throwing away elements of
estimate ofz;(n) from z;_1([n/2]) plus the estimation error States will, in general, also destroy internality. This wil
w;(n). Therefore, the standard linear least squares formuRgcur if, for any node(j,n), the statex;(n) cannot be

[38] dictate that written as a linear function of its children states because the
necessary information has been discarded in the process of
Aj(n) =P, (n)wjfl([n/21)P;i1([n/21) (4) state dimension reduction. This raises the following interesting
! _ question: how can low-order approximate models (i.e., those
Qj(n) = Po;(n) — Poymye; /20 Fe, () for which Py ~ Py) also be made internal?
X Py, (In/2)z;(n) ) Our approach to this question, in particular, and to the

stochastic realization problem, in general, differs considerably
whereP. is our notation for the covariance matrix for randomrom previous work [23]-[28] in several ways. In this previous
vector » and P, is the cross covariance matrix for randomyork, the states of exact models are closely tied to the process
vectorsu andv. The state covariances and cross-covariancgging modeled in that the internal matrices are determined by

follow trivially from (3) as solving optimization problems, the parameters of which are
governed by the intricacies of fine-scale desired covariance

Pyyny = Wi(n)PsW;(n)" (6) P;. Therefore, these internal matrices have no meaningful

Py tmya;_1(Iny2) = Pijil([n/Qij(n) structure beyond the fact that they are solutions to specific

optimization problems.
In contrast to these previous approaches, our internal ma-
While a full theoretical development of internal MARmceS are not the solutions to optimizatiqn problems. Instead,
processes may be found in [24], we point out one asp QFy are selected from the small but rich class of wavelet
of this theory so as to avoid confusion. An MAR proces8@Ses- Therefore, they take no work to compute and have the
has white noise-driven coarse-to-fine dynamics [cf. (1)]. Yéptunwely pleasing and mathematically rich structure given by

for an internal MAR process, the parent statg(n) is a wavelets. Moreover, we directly design approximate internal
' models without first constructing an exact model and then

SE[] is the expectation operator. discarding state information.

= W;(m)PsWia(ln/2)". (7)
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Ill. WAVELET BACKGROUND
In this section, we give a brief review of wavelet decom- % %
positions. For more details see [17], [32], [34], and [36]. The

wavelet representation of a continuous sighatonsists of a

sequence of approximations Bfat coarser and coarser scales

where the approximation at thjéh scale consists of a weighted

sum of shifted and dilated versions of a basic functioralled 4j(n) aj{n+1) 4i(n+2) aj(n+3)

the scaling function. By considering the incremental detailg; 5 The Haar dependency graph is a dyadic tree. Heis,even.
added in obtaining théj 4 1)st scale approximation from the

jth, one arrives at the wavelet transform based on a smq_ ) _ _
function ¢ called the analyzing wavelet. ) he reconstruction algorithm is
The reconstruction is performed using the functigrcalled Z h(n — 2p)a; (p) + Zg n—2p)d;(p). (11)

the synthesis wavelet, such that the two famifi¢s,,. } ; nycz2
and {t;,n}(;n)czz are a biorthogonal Riesz basis 6F(R)

where The coefficientsz;(n) andd;(n) are called, respectively, the
) scaling and detail coefficients at thth scale anchth shift.
b (t) 2 Li/}(t — 21”) In the remainder of this paper, we consider only the case
V2 29 when i and i are finite impulse response (FIR) filters, i.e.,

when they have a finite number of nonzero coefficients. For
and similarly f0”/}1 «- The synthesis wavelet is obtained the sake of notational simplicity, we assume that the lengths of
from the functiong which is dual to¢, i.e., which satisfies 1, and/, are both even. Without loss of generality, we choose
(#(t), p(t—n)) = 6(n), where(-) is the standard inner productsupp(h) = [~ R+ 1, R] andsupp(h) = [~ R + 1, R] for some
in L*(R) andé(-) is the Dirac function. The scaling functionsintegers? and R such that? > R > 1. Thus, using (9) we

¢ and ¢ must satisfy havesupp(§) = [-R+1, R] andsupp(g) = [-R+1, &]. We
also assume that and R have the same parity. We point out,
\/_Z h(n)¢(2t —n) however, that all the results in this paper hold for all perfect
and reconstruction FIR filters with minor modifications.

The wavelet reconstruction algorithm (11) defines a dy-
\/_Zh 2t—” namical relationship between the scaling coefficienf&n)

at one scale and those at the next finer scale, with the detail

whereh andh are discrete filters satisfying the blorthogonahtyC oefficientsd; (n) acting as the input. Note tha't these dynamics

condition in £2(7) are with respect tacalerather than time. This suggests that

it is natural to think of constructing MAR processes within

Z h(E)Yh(k — 2n) = Z h(EYh(k — 2n) = 8(n).  (8) _the wavelet framework. This construction is, in fact, obvious
in the case of the Haar wavelet [21] because the dependency
structure of the wavelet coefficients is a dyadic tree as shown

¢ and are given by in Fig. 2. Indeed, the wavelet reconstruction algorithm using
the Haar system states that, for egck 1,---,.J
\/_Zg P2t —n) 1 (_1)n_1
a;(n) = E%’fl([ﬂ/Q]) + Tdﬁl([ﬂ/?]) (12)
\/_Zg 2t —n)
Assuming that the detail coefficients are white noise, (12)
h suggests that one can build an MAR process [21] by defining
where eachz;(n) as containing a scalingnd detail coefficient at
g(n) = (=1)'""h(1—n) 9 scalej and positionn, i.e., z;(n) = [a;(n) d;(n)]*. For
{g(n) = (_1)1_"’h(1 —n) ©) j=1,---,J—1, the auto-regression for this model is
: , ; B} , 171 (=1t 0
The discrete filtersh, g, h, and ¢ must satisfy the perfect z;(n) = — [0 0 }xj_l([n/z]) + |:1:|w]'(71) (13)
reconstruction condition which can be found in [32]. When V2

h = h andg = g, thenh is a conjugate mirror filter (CMF) and wherew; (n) representg,; (n). The auto-regression at the finest
the family {+;.}(;.n)czz constitutes an orthonormal waveletscale ./ is simply given by
basis of L?(R). 1
The fast wavelet transform computes the wavelet coeffi- zy(n) = =1 (=1)"zs 1([n/2]). (14)
cients of a discrete signal;(-). The fast wavelet decompo- V2
sition algorithm is The link between MAR processes and wavelets is not obvi-
ous if one considers wavelets other than the Haar system. This
{“J(”) = 22p Mo = 2n)a,41(p) (10) is due to the overlapping supports of such wavelets (which
dj(n) = 22, 9(p — 2n)aj+1(p). does not occur in the Haar case). Indeed, to compute a scaling
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A. Tree Structure
To see the intuition behind how to define the states in order

to arrive at a tree structure, let us consider the simple case
where /. is the Daubechies four-tap filter [17]. In this case,
we havesupp(h) = [—1,2]. Then, the wavelet reconstruction
algorithm (11) implies that for every even integer

aj(n-1) ai(n) ajn+1) aj(n+2)
4 n
B

aj(n—1)= > h(n—2p—a;_1(p)
p=%—1

n

Fig. 3. Dependency graph for the Daubechies four-tap filter. iHaseeven.
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Fig. 4. Through state augmentation, the dependency graph for the 2t ( )
Daubechies four-tap filter can be made into a tree. Here even. aj(ﬂ + 1) = Z h(ﬂ —2p+ 1)aj—1(p)

=z
coefficienta;(n) one does not need only the time-synchronous g
parent§ of a;(n) but also a number of neighboring coefficients + 2 9(n—2p+1)d;1(p)
depending on the supports of the analysis and synthesis P=%
wavelet. Thus, if we build a multiscale process where the states st!
are defined as in the Haar case, isg(n) = [a;(n) d;(n)]7, aj(n+2)= > h(n—2p+2)a;_1(p)
but where we consider that the scaling and detail coefficients r=%
are computed using more regular wavelets, we will end up 241
with a more complex graph structure of the scale-to-scale auto- + Z g(n —2p+2)d;_1(p).
regression instead of a tree one as imposed by (1). This is p=2
illustrated in Fig. 3 in the case of the Daubechies four-tap
filter [17]. Therefore, for everyj = 0,---,J and for everyn =

The first issue, then, is to redefine the states in such awgy . . o5 _ 1 ; .
as to arrive at a tree dependency structure rather than a nv:(?re 2 = 1. if we chose each state;(n) to be
complex graph. We will see that this can be done easily using
state augmentation. The second issue we must address, which zj(n) = [aj(n — 1), a;(n), a;(n + 1), d;(n - 1),
is the crucial issue and the most difficult one, is how to provide dj(n),dj(n + 1)]"
internality. As mentioned in Section I, this is, in fact, one of
our main objectives since we want to use wavelets as the lin@dg clear from (15) that the scaling coefficients carried within
functionals that define the internal states. These two issues \&Hjchxj(n) depend only on the parent;_;([n/2]) of z;(n)

be the focus of the next section. (see Fig. 4).
In the general case, for evefy= 0,---,.J and for every
IV. WAVELET-BASED INTERNAL MAR PROCESSES n=20,---,27 — 1, the state at scalgand shiftn is defined as

In this section, we first address (in subsection A) the iss§8°WN in (16), at the bottom of this page. The details showing

of defining the states in such way to obtain a tree dependerigt (16) implies that each state depends only on its parent can

structure. We then address (in subsection B) the issue Q5 found in Appendix A. We then can show that

internality.

zj(n) = ﬁj(”) i-1([n/2]) +wi(n), FOZj<J (17)
- J

6The time-synchronous parents @f () [or d;(n)] area;_;([r/2]) and {a: (n) (n)i {([n/2)) if j—J
J i— ) =

d;_1([n/2]).

~ ~ ~ T
j(n—R+1),---,aj(n+R—1),dj(n—#Jrl),---,dj(wr#—m L H0Si<T g
(n), it j=J
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Fig. 5. Example of the internal MAR-wavelet process with the Daubechies four-tap filter. Scaling coefficients in bold illustrate the necessatipinform
transmitted from one scale to the next. The boxed coefficients are a linear function of the coefficients of their children by the wavelet decotgpatition a

where and thus are deterministic inputs, then (17), (18) is just a
rewriting of the wavelet reconstruction algorithm (11). But

R+ R if the coefficientsd;(n) are generated as random variables,
wi(n)=10,-,0,dj{n——5—+ 1)7"'7 then (17) and (18) constitute a statisticabdel for a fine-
2F—1 times scale process. However, almost surely, the states generated by
T this model do not consist of scaling and detail coefficienfs
R+R the realized fine-scale process. This is because the standard
d; <” t— - 1) (18) mAR-wavelet process isotinternal. Indeed, as mentioned in

Section I, a necessary and sufficient condition for internality

is that each state has to be a linear functional of its im-
The proof of (17) and the expression for the matrigg$n) mediate children [23]-[25]. From the wavelet decomposition
can also be found in Appendix A. algorithm, one can easily see that, whgn> 1, each state of

Assuming thatw(-) is a white noise process uncorrelateghe standard MAR-wavelet process is not a linear functional of

with the root node stateo (0), (17) represents an MAR processyst jts immediate children but of the range of states at the next
with dynamics matching the reconstruction algorithm assogjner scale depending on the supports of the scaling functions.
ated with any compactly supported orthogonal or biorthogonalthe guestion now is how to build an internal MAR-wavelet
wavelet. In the sequel, we refer to this procesthasstandard process in order to ensure that the states consist of scaling and

MAR-wavelet process detail coefficients of the realized fine-scale process. This issue
is, in fact, the one which seemed to doom the union between
B. The Internal MAR-Wavelet Process MAR process and wavelets, and the central contribution of

) If the Coeﬁ'c'ede_j (”) are considered as theIQetall Coe_ﬁ" "For each state:;(n), only a;(n) andd;(n) can be expressed as linear
cients computed using the wavelet decomposition algorithiomctions of the children states.
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this paper is to solve this problem. This will be done by The idea behind constructing internal states is to define new
exhibiting and exploiting some relationships between scalistatesr;(n) in such a way so that the left (respectively, right)
and detail coefficients and by appropriately modifying thehild of z;(n) containsgé. £ [aj(n—fz+1) aj(n_y_
state d-efInItIOI’l. We emphasize that this is purely determlnlstjﬂ (respecticelya’; 2 A [ R—R ), - a](nJrR_ 1)].
analysis. However, having copied! anda from xj( n) to its children
The intuition that leads us to construct internal states &S (2n) and $J+1(2n + 1), we must continue to pass

essentially state augmentation. For the coarse-to-fine synthegasand a; down to the children (and grandchildren and so
each state needs to have all the necessary information. ngﬁ:) ofz;41(2n) and z;11(2n+ 1) to maintain internality.
was done in the standard MAR-wavelet process. We negfl course, we must do this for aji and ». This seems to
now to make sure that each state has all the information fQiggest that the state dimensions will explode. However, by
analysis so that we have internality. As explained above, thgmply splitting at each step the necessary information between
states of the standard MAR-wavelet process do not contaffe two children, the state dimension remains bounded. The
enough information. We thus need to augment the statescinstruction of the states is depicted in Fig. 5 in the simple
order to achieve internality. Before showing how we augmegase of Daubechies four-tap filter. To define rigorously the
the states, we need the following intermediate result whighternal states in the general case, joe= 0,.--,27 — 1, we
allows us to add only a few coefficients in the process dlefine recursively the sequence of vectdign) as shown in
defining internal states. (21) at the bottom of this page. We then have the final result
in which we show in bold the augmentation of the states with
respect to the standard MAR-wavelet model. This is shown
in (22)

Proposition 1: There exists four matrices, J1, I, Jo such
that i
dj(n — 55 +1)
: Proposition 2: The MAR process for which the states are

d;(n - 1) defined by
aj(n — R+1) ajr1(2n — R+ 1) ) )
=1 + J1 z0(0) = <CL0(—R+1),---,CL0(R—1),
aﬂn—#—l) aj+1(2n+R—2) R R T
(19) N LR R L
dj(n—i— 1) 2 2
(o 52— = (o= R0 R
a;(n+ 252 +1) a;41(2n — R+ 3) R4R
:IQ +J2 dl -——+1 IR
CLj(TL—i-R— 1) aj+l(2n+‘é) - T
(20) d; <n+ L 1) ,U:;+1<0>>
Proof: See Appendix B. O
R-R R-R
o= a8 ) s
Ug(0) U o)
L - R—R L
Ui_1(n/2),a;_1(n/2 — R+1),--+,a;_1| n/2 — -1]1, if n is even (21)
—_—— 2
A o
U(n) = ;
, R-R . L
Ui_1([n/2]), aj—1 | [n/2] + 5 +1),---,a;21(n/2] + R-1) |, if n is odd
—_———
Utr) ~-

\ U_? (n)
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~ ~ in this prediction as white (the requirement for the Markov
j(n) = <aﬂ'(” —R+1),-a5(n+ E-1), Property to be satisfied).
. The implications of this are twofold. First, the resulting
d: <n_ R+ R I 1) internal model in general produces fine-scale statistics that
/ T only approximate the desired ones (because of our insistence

. T that the coarse-to-fine prediction errors be white). To be
4 <n n R+R 1) ,U,-(n)) (22) sure, our inFernaI I\/'IA.R—WaveIet modealoes produce the. '
correct marginal statistics at each node and the correct joint
statistics for each state and its parent, but other statistics
(e.g., cross-covariance for two nodes at the same scale) are
g only captured approximately. The second point is that the
coarse-to-fine dynamics so defined are in genaratdifferent
We refer to this new process &se internal MAR-wavelet from standard wavelet modeling. In particular, these dynamics
process Notice that the size of eadl;(n) is R+ R—2. Thus exploit correlation between detail coefficiematsdcoarser scale
the maximal state dimension of the internal MAR-wavelefcaling and detail coefficients by performing optimal predic-
process isiR + 2R — 4. tion and then assuming that the errors in these predictions are
With Proposition 2, we have shown how to build internajhite. This is in contrast to one common approach in using
MAR processes based on any compactly supported orthogo@alelets for modeling stochastic processes in which the detail
or biorthogonal wavelet. This completes our unification tdoefficients are themselves modeled as white (i.e., the wavelet
wavelets with MAR processes. representation isssumedo be the Karhunen-Loeve (K-L)
decomposition). In our case, since we allow MAR dynamics,
we do notneedto have K-L diagonalization. Rather, the
V. APPROXIMATE MAR-WAVELET success of our method in approximating stochastic processes
MODELS FOR STOCHASTIC PROCESSES relies only on the weaker requirement that thgors in

In this section, we focus on the construction of approximaf¥edicting finer scale detail coefficients from coarser scale
MAR-wavelet models for stochastic processes in order to takeefficients are white. As we illustrate, an implication of this
advantage of the fast statistical signal processing algorithifisthat we can use fairly short wavelets, implying lower state
associated with the MAR framework. In our examples, wdimensions, which certainly dootdo a good job of whitening
will use the fast sample-path generator and the fast lindh€ details (as evidenced by our results using the noninternal
least squares estimator for estimating a signal from irregulaf{andard MAR-wavelet models), but which do remarkably well
spaced, sparse measurements corrupted by nonstationary nf#eour internal models.

The standard MAR-wavelet process, defined by (17) andUsing this optimal prediction procedure, we incorporate
(18)' can be used as an approximate model for a Stochagié}yntheSiS algorithm for the detail coefficients in addition
process by assuming that the detail coefficients are white. ¥gethe usual wavelet reconstruction algorithm for the scaling
call this model thestandard MAR-wavelet modélowever, the coefficients. The initialization for this new synthesis algorithm
states realized using this model are not consistent with the fin@given by the statistics of the scaling and detail coefficients at
scale realized process; in that they do not represent, withthe coarsest scale. Those statistics are given by the covariance
probability one, scaling and detail coefficientsaf. This is matrix £, of the root node state which is computed using
because of the lack of internality, as discussed in Section 1{8) (in which P; is replaced byP).

B. Notice that the assumption of the whitenessu¢f) [defined =~ More precisely, the optimal prediction is performed as
by (18)] is never fulfilled if& > 1. Indeed, forn andm such follows: if D;(n) represents the detail coefficients carried by
that0 < |n —m| < R+ R—2, it is clear that, at a given the statex;(n) defined by (22), then

scalej, w;(n) andw;(m) are correlated since they share at

least ‘Gnejée)tail coejff(ici()ent. ! §(n) = Ppjw)e; (["/QDPw_jil([n/?ij—l([”/2]) +wj(n)

By achieving internality, the states of the internal MAR- ) L ) (23)
wavelet process (22) are forced to be consistent with tM\@ere the covariance matrix fap; (n) is
fine-scale realized process. We can then examine the problem
of building internal stochastic models that are consistent with
the graph structure of the tree (i.e., we insist on models in x ng(n,)mj,1([n,/21)
which we have the Markov Property) and approximate the
given statistics of a fine-scale process. Given these fine-sc&il! WNer€’n (), Lp;(nyz; 1 ([n/2), @NALL, , (n/2)) are sub-
statistics, internality provides immediately the statistics of aff/atrices OfF%; ) and )z, (1n/2)) Which are computed
MAR state and the statistics between each state and its par&id (6) and (7) in whictF; is replaced by, the covariance
as each state is a set of linear functionals of the fine scarlﬁ"?‘tr'x for the signal being modelédThe prediction errors

As a result, we can immediately define the linear dynami¢ (%) & not white in general. This can be easily seen from

of an MAR model of the form (1). The dynamics of thisthe fact that the states of the internal MAR-wavelet model

quel incc_)rporate opt_im.al prediCtion from parent to child 8The internal matrices required in (6) and (7) are implicitly given by
using the implied statistics, and we then model the erropsoposition 2.

is internal.
Proof: See Appendix C.

-1
Pa,m) = Poyom) = Loz (/2 Pe, | ((y2))
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contain duplicated detail coefficients. Yet, we assume that the
prediction errorsi,; (n) in (22) are white noise to legitimately
apply the signal processing algorithms provided by the MAR
framework. We thus have an approximate MAR model for any
process whose second-order statistiés, are known. We will
refer to this model as thmternal MAR-wavelet modeNote

that an advantage of the internal MAR-wavelet model and,
in fact, of any internal model is that it achieves the correct
variances (i.e., the diagonal elements Bf match exactly
those of Py).

We emphasize another important point. In real world prob-
lems, the user may not know how to choose the appropriate
wavelet to do a good job in decorrelating the process under
study. Thus, the resulting detail and scaling coefficients may
be strongly correlated. We point out that, even in this case, our
internal MAR-wavelet model can be an accurate one for the
underlying process by exploiting these potential correlations,
as well as the correlations between detail and scaling coef-
ficients, in the optimal prediction scheme. We will illustrate
this later in the case of an fBm.

To be more precise, let us discuss this optimal prediction
algorithm in the simple case of the Haar wavelet and support
this discussion by showing some examples for fBm. We will
consider fBm defined on the time intervéd,1] and we
normalize the fBm statistics to have unit variance at time one.
The covariance function for fBm [33] is

1
rr(ty,t2) = §(|t1|2H e =), (29)

Fig. 6(a) and (b) shows’; for 64 samples of fBm on the
interval (0, 1] with Hurst parameted = 0.3 and H = 0.7,
respectively.

A. The Haar Case

The MAR-Haar model defined in Section Il by (13) and
(14) has many drawbacks. First, the assumption that the detail
coefficients are white is very poor in general. Indeed, since
the Haar wavelet has only one vanishing moment, for most
processes the resulting detail coefficients are strongly corre- (b)
lated both in space and scale. Second, due to the piecewiges. Exact covariance matrices for fBm. (&)= 0.3. (b) H = 0.7.
constant shape of the Haar wavelet, any realized covariance
matrix (i.e., the covariance matrix af;) with this model
will have “blockiness” in general. Thus, any sample-pat . : .
generated using this model will have distracting artifacts a m zj-1([n/2]). Thus, whilew;(n) n the ”?O_de' defined
will be blocky. Therefore, this model is not appropriate foPy (13) a”?' (1_4) represents the detail coefﬁmé_l;(tn), the_ .
synthesizing or estimating stochastic processes in general. &(ﬁcess noise in the '”t.e”.‘a' model .based on.optlmal prediction
illustration of this phenomenon is shown in Fig. 7(a) whicl" represent the predlptlon error In the e§t|mat|ond9(n)
displays P, for an fBm with Hurst parameteH — 0.3. It is conditionedon the detail and scaling coefficient represented
clear by comparing Fig. 6(a) and Fig. 7(a) thfat is a poor by ;-1([n/2)), i.e.,
approximation taP;. We point out, however, that this model
has been successfully used for hypothesis discrimination. In Qj(n) = [0 9 }

[21] the authors applied the MAR likelihood calculator to 0 var[w;(n)]
accurately estimate the Hurst parameter of fBm. ) o

Now, notice that this model is internal, which is cleavhere, from the linear least squares estimation error formula,
from the wavelet decomposition algorithm associated witfie nave
the Haar system. Therefore, instead of using the dynamics R .
defined by (13) and (14), one can build a more accurate modelvar(w;(n)] = var[d;(n)] — Py, (n)-rjq([n/2])ij,1([n/z])

[14] by computing the auto-regression parameters so that the X Pr_ (fn/2)d;(n)-

ultiscale auto-regression is the optimal prediction:efn)
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Fig. 7. Realized covariance matricé%; for fBm with H = 0.3. (a) P, using the standard MAR-Haar model. (8); using the internal MAR-Haar
model. (c) |Py — P;| where Py is from (b).

Therefore, this multiscale model will capture correlationthat the states they form approximatively fulfill tbenditional

in scale among the detail coefficients represented by statesletorrelation role of the Markov Property.

neighboring nodes in the tree. Thus, this optimal prediction To support these arguments and to illustrate the performance

model will do a better job of approximating the statistics o6f the optimal prediction procedure, we apply our MAR-

the underlying process than does the model defined by (1velet models to approximate the statistics of fBm using

and (14). The improvement is illustrated in the case of fBm idifferent wavelets. Specifically, we compare the internal MAR-

Fig. 7(b) which displays the realized covariance matrix of amavelet model to the standard MAR-wavelet model which

fBm with Hurst parameted = 0.3 and should be comparedassumes the whiteness of the detail coefficients. We use the

to Fig. 7(a). This shows the power of the optimal predictiobaubechies orthogonal wavelet with two vanishing moments

procedure in the simple case of the Haar wavelet. (Daub4), the Daubechies orthogonal wavelet with three van-
ishing moments (Daub6), the spline biorthogonal wavelet
(Splinel3) such th%tﬁ](z) [respectively, H(z)] has three

B. The General Case (respectively, 1) zeros at= —1, and the spline biorthogonal

It is worth noting that, with the Haar wavelet, the detai avelet (Spline31) such th"ﬁ(z) [respectively,H ()] has 1
! ' [espectively, three) zeros at= —1.

coefficients which are not neighbors (in space and scale) %:I 8(a)—(c) displays the element-wise absolute value of
in general also strongly correlated. Therefore, even with thiﬁe g. piay
I

optimal prediction procedure, the internal MAR-Haar mod()%(lA difference betweer; and /iy obtained by the standard

remains very crude since it captures only the correlatio R—V\;gv?IetDmogifl Dfor ba6n fngSV\Il!thI—lIS ?I'ho'; using, i
between a detail coefficient at a given scale and the tim&>PECVEly, Daubs, Daubs, and Splinels. 1he improvemen
Wth respect to the standard MAR—Haar model is clear as

synchronous detail and scaling coefficients at the previo ted. si : Vi lets with
coarser scale. Fig. 7(b) and (c) illustrates the limitation of th pected, since we are using analyzing wavelets with more
than one vanishing moment. However, the approximation

model in the case of fBm witlld = 0.3. One sees that the .

realized covariance matrix is still a poor approximation of the no_t_saﬂsfactory which is not surprising since the detail
true one coefficients are not exactly decorrelated using these wavelets.
) inally, note that Daub6 does better than Splinel3 because

One way to overcome the limitations of the Haar wavelet E

to build an internal MAR-wavelet model using an analyzin an6_ IS an orthogonal_wavelet and is smoother than the
alyzing wavelet of Splinel3.

wavelet with a large number of vanishing moments. With su N ith the int | MAR let del. the detail
a wavelet, the detail coefficients which are not neighbors in ow, wi € interna “wavelet model, the detal
fficients are no longer assumed to be white noise. Instead,

space and scale will, in general, be better decorrelated ) : o
ney are computed using the optimal prediction procedure

the potential correlations will reside only between neighbo ) ;
ing coefficients. Then, our optimal prediction procedure Wiﬁigscrlbed above. Therefore, the .|nt'ernal MAR-Wa}veIet model
| better approximate the statistics of fBm. Fig. 9(a)—(c)

exploit these residual correlations between detail and scalil

coefficients and do the best job in linearly predicting the detdll plays the element-wise absolute_ value of the d|ﬁerence
coefficients. etween Py and P; for an fBm with H = 0.3 using,

However, this is not the only solution. One can still bu”dgspectlvely, Daub4, Daub6, and Splinel3. The improvement

accurate models without using an analyzing wavelet with Iar%th lrgspect tg. thle stamdard MAIIQ-Wav::‘Iet. moctj)el IISt clealr.
number of vanishing moments. Indeed, all we need to ha 8- (@)—(c) displays the same element-wise absolute value

accurate models is to provide a good approximation to the
Markov Property. Therefore, accurate models will be provideds g . (respectively, 77(>)) is the =-transform of h(n) (respectively,
usinganywavelet yielding scaling and detail coefficients such(»)).
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Fig. 8. |Py — Py| for fBm with H = 0.3 using the standard MAR-wavelet model. (a) Daub4 (state dimension six). (b) Daub6 (state dimension ten).
(c) Splinel3 (state dimension eight).
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Fig. 9. |Py — P;| for fBm with H = 0.3 using the internal MAR-wavelet model. (a) Daub4 (state dimension eight). (b) Daub6 (state dimension
14). (c) Splinel3 (state dimension ten).
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Fig. 10. |P; — Py| for fBm with H = 0.7 using the internal wavelet model. (a) Daub4 (state dimension eight). (b) Daub6 (state dimension 14).
(c) Splinel3 (state dimension ten).

of the difference obtained using the internal MAR-waveleP; using the standard MAR-wavelet model. One sees that
model for fBm with H = 0.7. the approximation is extremely bad, which is not surprising
To illustrate, in the case of fBm, the fact that even with relgiven the properties of Spline31 and the weakness of the
atively nonregular wavelets our internal MAR-wavelet modelssumption that the detail coefficients are white. However,
can provide very accurate models, we use the biorthogasing the internal MAR-wavelet model, the approximation
nal wavelet Spline31. The analyzing wavelet for Spline3$ very accurate as displayed in Fig. 12(b). Furthermore,
has only one vanishing moment and the synthesis wavetgtice that this approximation is more accurate than the one
is extremely singular (see Fig. 11). Fig. 12(a) displays thkustrated in Fig. 10(c) in which the state dimension is larger.
element-wise absolute value of the difference betwBeand Indeed, in Fig. 12(b) we havél = R = 2 and thus the
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Fig. 11. Spline biorthogonal wavelet (Spline31). (a) Analyzing wavelet. (b) Synthesis wavelet.

y ‘ llll';"o o
l' . o R:
' o /, ‘ ) ‘\\‘\ \“
.II//'I””I[Q‘I:'I/A i ”I' | '/I ‘“ \\\‘\0 \\‘ “u 0 )
N \ ) E
""'m'l:;,(‘ \\\ \ m m \\\‘\\‘ §“§‘
4 /Io “' W‘\ \\\‘« \““
“ /Il // ‘.\

s
/gll I
'I:" ‘\\
% i
) ..‘m ,// 0 M ‘4'0.0“}\\ “\\\
1//// \\M r

| "I\thlf"‘ :

“\\\

0.6 0.8

0.4

04
0.2

[

(b)

Fig. 12. |P; — Py| for fBm with H = 0.7 using (a) the standard MAR-wavelet model with Spline31 (state dimension six) and (b) the internal
MAR-wavelet model with Spline31 (state dimension eight).

maximum state dimension is eight while in Fig. 10(c) we havweariance 0.5). Fig. 14(c) displays the MAR estimates based
R = R = 3 and thus the maximum state dimension is temn 14(b) using the internal wavelet model with Daub6. The
This shows the power of the optimal prediction procedure MAR estimates are the solid line and the optimal estimates
approximating the Markov Property even without considerinigased on the exact statisfitsare the dash—dot line. The
analyzing wavelets with a large number of vanishing momenfdus/minus one standard deviation error bars are the dashed

Now, we use the fast signal processing algorithms associatiee. Fig. 15 illustrates the same processing but for fBm with
with the MAR framework to synthesize fBm sample-path& = 0.7. Notice that in both Fig. 14(c) and in Fig. 15(c)
and to perform estimation from irregularly-spaced and sparde optimal estimate based on the exact statistics is not easily
measurements corrupted by nonstationary noise. We emptistinguishable from the MAR estimate since the two nearly
size that the latter is a problem whidannotbe easily and coincide. Also, the estimation error standard deviations that
efficiently handled with other estimation techniques due to titke MAR estimator provides are very close to the ones based
nonstationarity of the process to be estimated and the proceaghe exact statistics (although we have not plotted the latter
noise and the irregularity of the measurements. Fig. 13(a) andour examples). More importantly, the difference between
(b) displays 256-point sample-paths using the internal MARRe optimal estimate and the MAR estimate is well within
wavelet model with Daub6 for an fBm witlf = 0.3 and the one standard deviation error bars. This demonstrates that
H = 0.7, respectively. Fig. 14(a) displays an exact 64-poirthe degree to which our internal MAR-wavelet model deviates
realizatiort® of fBm with H = 0.3. Fig. 14(b) displays noisy from the exact model is statistically irrelevant.
observations of (a) where observations are only available onFinally, we point out that in the case of finite length signals,
(0, 1/3] (over which the white measurement noise has varianf®ded discrete transforms [32] can be applied in the case of
0.3) and(2/3, 1] (over which the white measurement noise has

UThat is, the optimal estimates are obtained by solving the normal
10Exact realizations of fBm are obtained by multiplying white Gaussiaaquations based on the true fBm and measurement statistics. Note that solving

noise by the matrix square root &f;. This requiresD(N3) computations if the normal equations requir€¥ N3) computations while the MAR estimator
Py is N x N. In contrast, the MAR sample-path generatoOigN ). is O(N) whereN is the size of the signal to be estimated [7]-[9].
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Fig. 13. fBm sample-paths using the internal MAR-wavelet model with Daub6H(ar 0.3. (b) H = 0.7.
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Fig. 14. MAR estimation for fBm withH = 0.3 using the internal MAR-wavelet model with Daub6. (a) Sample-path using exact statistics. (b) Noisy,
irregular, and sparse observations of (a). The noise variance(0yef3] is 0.3 and over2/3,1] is 0.5. (c) MAR estimates are the solid line and optimal
estimates based on the exact statistics are the dash-dot line. The plus/minus one standard deviation error bars are the dashed line.
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Fig. 15. MAR estimation for fBm withH = 0.7 using the internal MAR-wavelet model with Daub6. (a) Sample-path using exact statistics. (b) Noisy,
irregular, and sparse observations of (a). The noise variance(0yef3] is 0.3 and ove(2/3,1] is 0.5. (c) MAR estimates are the solid line and optimal
estimates based on the exact statistics are the dash—dot line. The plus/minus one standard deviation error bars are the dashed line.

symmetric or antisymmetric biorthogonal wavelets. Boundaprocesses based on any compactly supported orthogonal or
wavelets [11] can be used in the case of orthogonal waveldi@rthogonal wavelet. We then used these internal MAR-
We used the folded discrete transform in both cases. In alavelet processes as approximate models for stochastic pro-
the examples we considered, the results were very closectsses. The marriage of the MAR and wavelet frameworks
those obtained by assuming the knowledge of the statisticsled us to incorporate a powerful reconstruction algorithm for
the signal over(—oc,oc). However, at this point, we havethe detail coefficients which complements the usual wavelet
no precise mathematical description for the influence of theconstruction algorithm for the scaling coefficients. While we
boarder treatment techniques on the accuracy of the modelsave used fBm as a vehicle to illustrate the performance of our
internal MAR-wavelet models, these models can be applied
to any process whose second-order statistics exist. While, in
this paper, we have assumed that these second-order statistics

The primary contribution of this paper has been to prare known (i.e..Ps is known), this is not a prerequisite: the
vide a unification of the MAR framework with the waveletinternal MAR-wavelet dynamics can be efficiently estimated
framework. We have shown how to construct internal MARlirectly from data.

VI. CONCLUSION
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In this way, our approach to modeling represents a new viewFinally, there are a number of open questions associated
of the multiscale stochastic realization problem. Rather tharith the work presented in this paper. One is how to choose the
selecting internal matrices which are finely tuned according tight wavelet which would provide the most accurate model
the particular signal being modeled (as previous approachesa particular class of processes. While there are many ways
do), we select them from a library of linear functionals. Oup address this issue, the one which is of most interest to
approach is not only computationally fast, but it provides @s is to use the lifting scheme concept [10], [18] to perform
systematic way to build MAR states that have meaningful amdultiscale decompositions which are adapted to the statistics
useful structure and are not tied directly to the intricate detaid$ the process under study. Another interesting question is:
of the process being modeled. how does modeling performance translate to performance in a

The idea of selecting internal matrices from a library ofarticular estimation problem? These are questions which will

linear functionals is an extremely important one in manyotivate our future work on MAR-wavelet models.
applications. For example, if one is interested in estimating

nonlocal variables from data collected at multiple resolutions, APPENDIX A
the MAR states must be able to represent the coarser variables PROOF OF (17)

in addition to playing a conditional decorrelation role. This To see that (16) implies that each state depends only on its
corresponds to selecting internal matrices from a library ghrent, consider two states(n) andz;(n+1) at scalej, for

linear functionals which include ones that not only do a googhme even integer € {0,---.2/ — 2}. The parent of these
conditional decorrelation job but also include ones whicfg states is

represent nonlocal variables to estimate or to include as

measurements. The particular library consisting of waveletz,_;(n/2) = [aj(n/z ~R+1),--,a;(n/2+R—1),

bases represents a natural candidate for this role and might

be useful for data fusion problems in which data are available R+ R

at several resolutions. dj(n/2 — —5—+ 1)+, d;(n/2
While we have shown how to build MAR processes for .

modeling one-dimensional signals, our approach generalizes + R+ R 1)

to higher dimensions. In two dimensions, there are a number 2

of important and challenging problems associated with ”ﬁen for every integei € {—R+ 1.... B— 11, we have

modeling and estimation of random fields. We are currently

working on extending the ideas in this paper to applications e .
in image processing. aj(n+i)= > hn+i-2pa;_1(p)
In addition to extending our work to two-dimensional prob- 241557
lems, there are a number of other interesting and challenging [
problems to consider for future research. First, having states ~ . ,
which contain wavelet coefficients suggests ways of doing + Z;R g(n +i=2p)dj(p) (25)
data-adaptive multiresolution estimation where the resolution B
of the estimate is governed by the quality of the data. Since tAad )
MAR estimator provides estimates ©f(n) for all (j,n), one g+
can use the estimates of the coarser-scale scaling coefficients;(n + 1 + ) = Z h(n+i+1—2p)a;_1(p)
of an MAR-wavelet model to obtain a coarser-scale signal o [itl=fy
estimate. Generalizing this idea, one can consider estimating L iR
the signal at a fine scale in areas where the data are of relatively #H . .
high quantity and quality and at a coarser scale where the data + Z g(n+i+1=2p)d;i(p).
are more sparse and of poor quality. R
Another challenging problem is to build MAR-wavelet (26)

models from incomplete covariance information (i.e., from jush order to check that eveny;_1(p) andd,_,(p) in (25) and

parts of P;). Solutions to problems of this type have bee(QG) is carried byz,;_;(n/2), one can easily check that
elusive because, before our work, the linear functionals which

define the states were based on complete knowledgE;of i B e L N CR+1,R—1]
and the relaxation of this has proven difficult. However, since 2 2 - ’
we select linear functionals from a library, we have no need Vie {-R+1,--,R—1}

for knowledge ofPs until we want to determine the MAR-

wavelet dynamics. However, at a given ndgen), the MAR  and that
parametersd;(n) and Q;(n) do not rely on all ofP; since t—R| [i+R
they are a function just oF; .y and P, (n)e;_, (jn/2))- These H 2 W’[ 2 ” = 2 9

are small matrices and, therefore, the dynamics which rely on . . .
unavailable parts of; can be efficiently estimated from data Vi€ {-R+1--- R-1}.

(if available) or chosen to be consistent with the piece®pf  Then, using (25) and (26), we get (17) where, for every
which are known. j € {1,---,J — 1}, the matricesA;(n) are (3R + R —

_R+R  RYR
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2) x (3f2 + R —2) and follow from (25) and (26) as: for Lemma 1:Leti be an integer i1, - -, RLQR — 1}, then
le{l,- 2R—1} forp € {[t2R] ... [2=1]} and

1—1

for pg € {[PHE=RT, . (ARt > h(R - 2p)a, <” - ¥ —i +p> + (R — 2p)

Aj(n)(l,pa — [0/2] + R) = h(n+1 — R — 2p,) r=0 )

~ R—
A;(n) <l,pd—[n/2]+ OR2+1 —1) =g(n+1— R —2py). X dj(n—i+p)= Z k)aj11(2n+ k) (27)
k=—R+1
When j = J, Aj(n) are vectors of lengtlBR + R — 2 and
and follow as: forp, € {[2+4528] ... [5]} and forp, € i1 PR
{[N+1—QR—R_1’ e [—"HQ?—R]} Zh ~R+1+ 2p)a; <n + 5 41— )
~ ~ ~ p=0
As(n)(1, pg —~[n/2] +R)=h(n+1—R—2p,). 4 G(—R+1+2p)d,(n+i—p)
5R+1 - . 5
As(n) <1,pd— [n/2] + 5~ 1) =gn+1—R—2py). _ Z B (E)ayan (20 + ) (28)
k=—R+3

where we have (29), as shown at the bottom of the page, and
APPENDIX B (30), also shown at the bottom of the page.
PROOF OF PROPOSITION 1 We now prove Proposition 1.
In this Appendix we provide a proof of Proposition 1. The  Proof. Define the matriced(; and K, as shown in (31)
proof of Proposition 1 requires the following lemma. Due tat the bottom of this page, and tHé4E — 1) x (R _1)
the lack of space, the proof of this lemma is omitted but cdriangular matricedd,, H», G1, andG>, as also shown at the

be found in [16]. bottom of this page, then (27) and (28) imply that
2 MR —2p)h(k+2 —2p+ R— R)+ §g(R—2p)g(k +2i — 2p), if k<2R— R—2
aik) = { ;=0 ) (29)
S0 (R — 2p)g(k + 2i — 2p), if k>2R—R—2
z M—R+1+2p)h(k+2p—2i+R—R)+§(—R+1+2p)g(k +2p —2i), if k>R—2R+3
Bi(k) = < 1= ) (30)
S o a(—R+1+2p)g(k + 2p — 2i), if k< R—2R+3
Oé#il(—.é-i-l) a#,l(_‘é+2) a#,l(‘é_2)
K QM_Q(—R—i_l) QM_Q(—R+2) QM_Q(R_2)
1= 2 2 2
al(—R—i— 1) al(—R—i—Z) al(R 2)
Bi(-R+3) Bi(-R+4) e pi(R)
B2(—R +3) Pa(—R+4) e Ba(R)
K, = . : . . (31)
Ban (~R+3) Ban (—R+4) Brin (R)
_R(R—=2(c=1), fori=1,---, BFR _1 and c=1,..., B8 1
0, otherW|se
_JoR-2(c-1), fori=1,--- BB _1 and c=1(--- B2
1o, otherwise
M—R+1+2(-¢), fori=1,---, 248 1 and c=1,---,1
0, otherwise
Gg(—R+1+2(1-¢), fori=1,--, B2 _1 and c=1,---,1
0, otherwise
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dj(n— B4R 4 1) aj(n— R+1)
Gy : + H; :
djn —1) an-2-1)) e
a;p1(2n — R+1)
=K :
a;+1(2n + R —2) [1]
dj(n+1) a;(n+ f7% + 1)
G2 : + : 2
dj(n+ 5% 1) aj(n+R—1)

(3]

CLj+1(27’L — R + 3) (]

K, :
i1 (271 + R)

(5]
Since g(R) # 0 and g(—R + 1) # 0, thenG, and G, are
invertible and (19) and (20) follow withl; = —G7H;,
Ji =G Ky, Iy = —Gy ' Hy, and.Jo = G5 ' K. o (6

APPENDIX C [7]

PROOF OF PROPOSITION 2
In this Appendix we provide a proof of Proposition 2. (8]
~ Proof: First, let us define for notational simpliciti =
BER Now consider the childrem; 1 (2n) andz;11(2n + 1)
of z;(n). Then we have the following.
* [aj(n — R+ 1),--,a;(n — £58 — 1)] (respectively, [10]
[a;(n+252+1),- -, a;(n+R-1)]) is obviously a linear

El

function of z;,1(2n) and (respectivelyz;1(2n + 1)) 11
since it is simply copied inU;41(2n) (respectively,
Uj+1(27’L + 1)) [12]

* Using Proposition 1{d;(n — R+1),---, d;(n —1)] and
[dj(n +1),---,d;(n + R — 1)] are a linear function of [13]
xj41(2n) andz;11(2n + 1), respectively.

e The wavelet decomposition formulas (10) imply thah4]
d;(n) is a linear function of: ;11 (2n) andz ;41 (2n + 1)

since they contain; 1 (m) form € {2n—R+1,---,2n+
Rj. (15]
» The wavelet decomposition formulas (10) also imply that
[aj(n — B58), .- a;(n + £58)] is a linear function [16]
of ;11(2n) and z;41(2n + 1). Indeed, fori € T 2
{—858 ... B=B} we have [17]
2n+2i+R (18]
aj(n+i)= Y hlp—2n—20)a;(p)-
p=2n+2i— R+1 [19]
Since
[20]
{27'L+2i—R+1,---,27’L+2i+R}i€I 21
={2n—-R+1,---,2n+ R} (2]
it follows that[a;(n— ﬁ’;—f"'), oL ay (n+R%R)] is alinear [22]
function of z;41(2n) and z,;11(2n + 1). 23]
 Finally, U;(n) is a linear function ofz,;:(2n) and
zj41(2n + 1) since the two part#/;(n) and U7 (n) that  [24]
composel;(n) are carried byU; 11(2n) andUj11(2n+ 25
1), respectively. O
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