
HAL Id: inria-00108329
https://inria.hal.science/inria-00108329

Submitted on 20 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Scheme for Implementation of the Scanning
ntuple Classifier in a Constrained Environment

Sanaul Hoque, Michael Fairhurst

To cite this version:
Sanaul Hoque, Michael Fairhurst. A Novel Scheme for Implementation of the Scanning ntuple Clas-
sifier in a Constrained Environment. Tenth International Workshop on Frontiers in Handwriting
Recognition, Université de Rennes 1, Oct 2006, La Baule (France). �inria-00108329�

https://inria.hal.science/inria-00108329
https://hal.archives-ouvertes.fr

A Novel Scheme for Implementation of the Scanning ntuple Classifier in a
Constrained Environment

Sanaul Hoque, Michael Fairhurst

Department of Electronics, University of Kent,
Canterbury, Kent, United Kingdom.

E-Mail: {S.Hoque; M.C.Fairhurst}@kent.ac.uk

Abstract

The scanning ntuple classifier is an efficient and accu-

rate classifier for handwriting recognition. One of the ma-

jor difficulties in implementing this scheme is its demand

for a very large memory space, thus making it unsuitable

for resource constrained systems such as embedded appli-

cations. This paper proposes some modifications to the

basic sntuple algorithm which eliminates the necessity of

normalizing the chain-code length, by adjusting the mem-

ory cell increments as an inverse function the chain length.

The resulting system performance is shown to be supe-

rior to the standard sntuple configuration in both speed

and accuracy when smaller and fewer sntuples are used,

a configuration which also reduces the demand for mem-

ory.

Keywords: sntuple, handwriting analysis, OCR.

1. Introduction

Automatic understanding, processing and recognition

of document images has witnessed rapid progress in re-

cent years and has entered a completely new era. Indus-

try is employing more and more automated systems based

on pattern recognition and computer vision techniques,

which are revolutionizing the way real life problems are

solved in commercial environments. Typical current ap-

plication domains include automated bank-cheque pro-

cessing [1], automated character recognition [2], generic

document processing [3], voucher processing [4], direct

handwriting recognition [5], signature verification [6], and

many others. In such practical applications there are two

parameters of particular general interest. The first is the

attainable system performance in terms of recognition or

verification, and the second is the cost of the system in

terms of execution speed or throughput, memory require-

ments, etc. Before adopting any particular implementa-

tion, both aspects of performance must be given due con-

sideration. It is extremely important to devise a system

which is accurate, but at the same time, the processing re-

quirements must be constrained to make the adoption of

such an automated system viable in an intended opera-

tional environment.

Weightless memory network classifiers (also known

as n-tuple classifiers) have a long history as particularly

simple and manageable but very fast classification struc-

tures for image recognition [7]. The scanning n-tuple (or

simply sntuple) classifier introduced by Lucas et al. as

a statistical-syntactic method is a variant of the n-tuple

system and has attracted considerable research attention

because of its high accuracy and speed in typical OCR

applications [8]. A large number of publications can be

found in the public domain focusing on further enhance-

ment of the sntuple classifier performance (see, for exam-

ple, [9, 10, 11, 12, 13]).

The focus of this paper is a handwriting recognition

application using the scanning n-tuple classification algo-

rithm [8, 14, 15]. In this paper we propose a modifica-

tion to the original sn-tuple algorithm, reducing the com-

putational cost significantly for certain operating condi-

tions. This makes the algorithm more readily implemen-

tible, particularly in resource-constrained embedded sys-

tems applications.

2. The Scanning n-tuple classifier

The scanning n-tuple (or simply sntuple) classifier has

been introduced by Lucas et al. as a statistical-syntactic

method for high performance OCR applications [8]. This

is a variant of the basic n-tuple system [7] except that it

operates on the chain coded representation of the hand-

written characters to be processed.

In the conventional n-tuple scheme, a 2-dimensional

binary image is decomposed into many sets of n-points

(known as n-tuples). Each such tuple is associated with

2
n memory locations (for any given class) which keep

count of the occurrences of every possible bit pattern oc-

curring during a training exercise. The process remains

essentially the same for grey-scaled images except that

σn memory locations are required per tuple, where σ is

the grey-level resolution of the image. In subsequent use,

contents of the memory locations corresponding to the n-

tuple bit patterns found in the test image are summed. The

label of the class producing the highest score is assigned

to the unknown pattern.

Unlike conventional n-tuple methods, the scanning

ntuple system operates on a chain-coded representation of

the image. A mask is used as a template to determine the

sampled points of the n-tuple. These points are, usually,

uniformly spaced from each other. Thus, by varying the

spacings, many different masks can be created. Each of

these masks is then applied repetitively to all points of the

chain code string, in order to sample the entire pattern.

Since a chain code descriptor can be associated with any

of eight possible values (0 through 7), 8
n memory loca-

tions should be provided for each mask. Here, n is the

size of the mask.

During the training cycle, for each position of a mask,

the corresponding memory cell is incremented by one.

During the test phase, all the contents of the relevant mem-

ory cells are added and the class generating the highest

score wins. More detail of the algorithm (as well as ap-

propriate pseudo-code), can be found in [14].

An online character can readily be converted to a chain

coded format simply by quantizing the pen movement

to 8-direction codes. An off-line character image can

also be transformed automatically by tracing its contour

(see [16, 17] for details) and expressing the path in chain

codes. Figure 1 illustrates the extraction of chain codes

from an offline character image. The chain coded strings

generated in this way differ significantly in their length.

The length depends on the pattern class as well as writ-

ing style, degree of slant, image quality etc, and Figure 2

shows typical lengths of the chain-coded string for various

characters. Since the masks in the sntuple scan over these

variable length strings, a variable number of tuples can be

fitted onto them and as such, image classes with shorter

chains are adversely affected. Lucas et al overcame this

problem by normalizing the extracted chain-coded strings

to a fixed length before using them for training or testing.

In this paper, we propose an alternative approach to over-

come this problem.

3. Proposed modification

It has already been pointed out that the length of the

chain coded string varies significantly, and characters with

shorter strings are thus adversely affected due to the exis-

tence of a smaller number of available mask positions over

the string. The remedy used by Lucas et al is to scale (usu-

ally by elongating) all the chains to a pre-specified fixed

length, a problem which is not only time-consuming, but

also invariably deforms the character shape.

In this paper we propose a scheme which does not in-

volve normalization of the chain coded string. Instead,

during the training phase, the system increments the mem-

ory locations, when addressed, by a factor of k
||y|| (where,

k= any constant, ||y||=length of chain coded string). Thus

it offsets the negative impact of shorter scan space by stor-

ing higher values in the corresponding memory cells. Ta-

ble 2 gives the pseudocode of the training cycle. The test-

ing phase remains identical to the standard sntuple algo-

rithm but excludes the chain-length normalization.

The proposed scheme not only removes the processing

module required for length normalization, but also saves

further processing time by permitting the scan to be car-

ried out on the short chains. The consequent benefits that

can be achieved are discussed in the following sections.

4. Experimental Results

In order to investigate the impact of the proposed mod-

ifications, experiments were conducted for the classifica-

tion of pre-segmented offline handwritten characters con-

sisting of digits and uppercase letters extracted from the

NIST database [18]. No distinction is made between

‘0’/‘O’ and ‘1’/‘I’ character pairs. There are 30899 im-

ages for training and 20667 for testing, each of resolu-

tion 32×32 pixels. Figure 3 illustrates one sample from

each character class in the database. Many different sntu-

ple masks were generated (all with uniformly spaced bits).

Although it is possible to mix differently sized masks in

any one implementation, for simplicity only masks of sim-

ilar size were used in the experiments reported here. In

the implementations of the standard sn-tuple algorithm,

extracted chaincoded strings were normalized to a fixed

length of 200.

Table 3 presents a comparison of recognition accura-

cies between the standard sntuple configuration and the

proposed scheme during digit-only classifications. The

figures presented are the mean accuracy over several runs

using a number m of different n-bit sntuple masks. As

the memory space required is an exponential function of

n, experiments were conducted for n ≤ 5. For n > 5, the

memory requirements become excessively high and we

excluded them from this investigation. Table 4 presents a

similar comparison of recognition accuracies when alpha-

numeric characters (ie, 34 classes) are used. It is obvi-

ous from these two tables that for large values of n and

m (ie, when many large masks are used), the original

sntuple algorithm outperforms the proposed scheme. But

for smaller n and m, the proposed scheme shows supe-

rior recognition rates. For example, in the 10-class sce-

nario, for n = 4, m = 3, the proposed scheme achieves

accuracy of 84.46% whereas the conventional algorithm

achieved 82.80%. Performance improvements are also

similar for the 34-class task.

It has already been pointed out that, by varying the

construction of the sntuple masks, many sntuple classi-

fiers can be implemented for the same values of n and

m. The performance of these individual implementations

can vary significantly and hence, in Table 3 and Table 4,

we present the average recognition accuracies achieved

over several possible implementations. It is not impos-

sible, subject to availability of sufficient training samples,

to find the optimum implementation (ie, an implementa-

tion that gives the best accuracy for a given n, m) for a

given task domain. Table 5 presents the comparative accu-

racies when we picked the best achieved recognition rates

for any given n, m. Again, it is evident that for smaller

n, m, the proposed scheme outperforms the original sntu-

ple configuration. Although not explicitly discussed in

detail here, it is also observed that the variances from dif-

ferent implementations were much lower in the proposed

algorithm.

One of the positive aspects of the sntuple scheme is its

START

START

(a) (b) (c)

Outer contour:

007000676766666667665665655454443. . .2221212121012

Inner contour:

565556665656767767700001011221222232223223452344

(d)

Figure 1. Extraction of chain-code from an off-line image by contour tracing; (a) outer contour tracing, (b) inner contour

tracing, (c) contour profile, (d) resulting chain-coded descriptor strings of the character.

Table 1. Training algorithm for the original sntuple

Step 1: Extract chain-code representation

Normalize chain to a fixed length

Step 2: Initialise all n-tuples

Step 3: Train all n-tuples on all training patterns

For each class c

For each chain coded string y

For each sn-tuple ncj

For offset o := 0 to ||y||
Identify the corresponding memory location

Increment memory content by 1

Step 4: Convert frequency counts to log probabilities

Table 2. Training algorithm for the proposed scheme

Step 1: Extract chain-code representation

{Normalize chain to a fixed length} ← No longer required
Step 2: Initialise all n-tuples

Step 3: Train all n-tuples on all training patterns

For each class c

For each chain coded string y

For each sn-tuple ncj

For offset o := 0 to ||y||
Identify the corresponding memory location

Increment memory content by k
||y|| ← Proposed modification

Step 4: Convert frequency counts to log probabilities

0 1 2 3 4 5 6 7 8 9 A B C D E F G H J K L M N P Q R S T U V W X Y Z
0

20

40

60

80

100

120

140

160

180

200

Character

C
h

ai
n

co
d

e
L

en
g

th

Figure 2. Mean length of extracted chain codes of the NIST characters

Figure 3. Some sample images from the NIST database used in this analysis

Table 3. Mean recognition accuracies (in %) as tested on Numerals (10-class)

Original sntuple Proposed Scheme

m m

n 1 2 3 4 5 6 n 1 2 3 4 5 6

1 39.84 - - - - - 1 40.54 - - - - -

2 56.09 61.33 65.08 67.76 69.73 71.28 2 58.66 64.50 67.60 69.45 70.41 71.19

3 64.99 71.95 76.37 79.45 81.75 83.32 3 68.87 75.64 78.89 80.60 81.52 81.95

4 70.08 78.40 82.80 85.45 87.07 88.12 4 74.87 81.84 84.46 85.59 85.91 85.92

5 74.08 82.66 86.73 88.68 89.80 90.51 5 78.74 85.25 87.18 87.73 87.83 87.67

Table 4. Mean recognition accuracies (in %) as tested on Alpha-numerics (34-class)

Original sntuple Proposed Scheme

m m

n 1 2 3 4 5 6 n 1 2 3 4 5 6

1 27.18 - - - - - 1 28.19 - - - - -

2 47.72 54.35 58.77 61.84 63.96 65.62 2 48.69 56.49 60.51 62.88 64.37 65.37

3 58.29 66.54 70.83 73.64 75.66 77.06 3 60.37 68.65 72.19 74.00 74.88 75.32

4 63.89 72.72 76.82 79.28 80.74 81.66 4 66.82 74.62 77.38 78.47 78.81 78.93

5 67.56 76.52 80.29 82.21 83.22 83.84 5 70.73 77.85 79.93 80.59 80.69 80.59

Table 5. Peak recognition accuracies (in %) as tested on Numerals (10-class)

Original sntuple Proposed Scheme

m m

n 1 2 3 4 5 6 n 1 2 3 4 5 6

1 39.85 - - - - - 1 40.54 - - - - -

2 60.53 66.52 70.30 72.77 74.42 75.77 2 63.64 68.90 71.08 72.21 72.68 73.14

3 70.99 77.85 82.46 85.17 86.66 87.46 3 75.51 80.51 82.46 82.87 82.88 82.93

4 77.24 84.74 87.84 89.50 90.20 90.47 4 81.50 85.71 86.75 86.73 86.76 86.61

5 82.13 88.42 90.66 91.30 91.55 91.73 5 84.51 88.03 88.31 88.35 88.61 88.58

capability for achieving very fast classification times. The

proposed scheme eliminates the necessity of normalizing

the length of the chaincoded string. Also, some additional

time is saved because the scanning is performed on the

smaller chain code strings that are extracted. Thus, the

proposed scheme can perform much faster than the stan-

dard sntuple classifier. Table 6 presents the throughputs

(in characters per second) achieved when the algorithms

were tested on a SUN Workstation (SUN FIRE V440 with

4GB RAM). It is evident that, on average, 40-50% ad-

ditional characters can be classified when using the pro-

posed scheme in comparison with the original formula-

tion.

5. Conclusion

This paper has introduced a modified scheme for the

implementation of the sntuple classifier. In the origi-

nal implementation, the extracted chain codes need to

be length normalized. Otherwise, characters producing

shorter chaincode strings were almost always classified

incorrectly. In the scheme proposed here, the memory lo-

cations associated with each sntuple were incremented by

a variable amount which is chosen as an inverse function

of the chain length. This scheme therefore overcomes the

particularly adverse effect of variable chain lengths and

hence eliminates the necessity of chain code string length

normalization.

The experimental results presented in the paper reveal

that the proposed scheme outperforms the original sntuple

by a significant margin when relatively fewer and smaller

size sntuples are being used. This phenomenon is ob-

served in both the 10-class and 34-class task domains.

The modified algorithm also works much faster as a

direct result of the elimination of the feature normaliza-

tion module and also because it scans over short chains,

with 40-50% additional improvements in throughput be-

ing achieved.

One of the bottlenecks in the implementation of an

sntuple algorithm is its requirement for a very large mem-

ory space. If a number m of different n-bit sntuples are

adopted in a C-class task domain, the total memory space

required is given as:

S = m8
nC.

It is therefore apparent that an ability to operate at smaller

n, m can reduce the memory demand for a system signif-

icantly. Embedded applications, which typically demand

very constrained resources, may find the proposed scheme

more suitable than the original sntuple algorithm.

References

[1] S. Knerr, V. Anisimov, O. Baret, N. Gorski, D. Price,

and J.C. Simon, “The a2ia intercheque system:

Courtesy amount and legal amount recognition for

french checks,” Int. J. Pattern Recognition and Arti-

ficial Intelligence, vol. 11, no. 4, pp. 505–548, 1997.

[2] M. C. Fairhurst and M. S. Hoque, “Moving win-

dow classifier: Approach to off-line image recogni-

tion,” Electronics Letters, vol. 36, no. 7, pp. 628–

630, March 2000.

[3] Y. Y. Tang, S.W. Lee, and C.Y. Suen, “Automatic

document processing: A survey,” Pattern Recogni-

tion, vol. 29, 1996.

[4] J. Mao, R. Lorie, and K. Mohiuddin, “A system for

automatically reading iata flight coupons,” in Pro-

ceedings of 4th International Conference on Doc-

ument Analysis and Recognition, Ulm, Germany,

1997, pp. 153–157.

Table 6. Classification speed in characters per sec (for n=5)

Original sntuple Proposed Scheme

no of m no of m

class 1 2 3 4 5 6 class 1 2 3 4 5 6

10 4000 2222 1538 1176 952 800 10 6667 2857 2222 1818 1389 1176

34 1378 590 413 225 254 202 34 1879 752 559 323 350 285

[5] L. Vuurpijl and L. Schomaker, “Finding structures in

diversity: A hierarchical clustering method for cate-

gorization of allographs in handwriting,” in Proceed-

ings of 4th International Conference on Document

Analysis and Recognition, Ulm, Germany, 1997, pp.

387–393.

[6] L.L. Lee, T. Berger, and E. Aviczer, “Reliable on-

line human signature verification system,” IEEE

Transactions on Pattern Analysis and Machine In-

telligence, vol. 18, no. 6, pp. 643–647, 1996.

[7] M. C. Fairhurst and T. J. Stonham, “A classification

system for alpha-numeric characters based on learn-

ing network techniques,” Digital Processes, vol. 2,

pp. 321–329, 1976.

[8] S. Lucas and A. Amiri, “Recognition of chain-coded

handwritten character images with scanning n-tuple

method,” Electronics Letters, vol. 31, no. 24, pp.

2088–2089, November 1995.

[9] E. H. Ratzlaff, “A scanning n-tuple classifier for

online recognition of handwritten digits,” in Pro-

ceedings of 6th International Conference on Docu-

ment Analysis and Recognition, Seattle, Washington,

USA, September 2001, pp. 18–22.

[10] G. Tambouratzis, “Improving the classification ac-

curacy of the scanning n-tuple method,” in Proceed-

ings of 15th IAPR International Conference on Pat-

tern Recognition), Barcelona, Spain, 3-8 September

2000, pp. 1050–1053.

[11] G. Tambouratzis, “Improving the clustering per-

formance of scanning n-tuple method by using

self-supervised algorithms to introduce subclasses,”

IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, no. 6, pp. 722–733, 2002.

[12] S. Hoque, K. Sirlantzis, and M.C. Fairhurst, “Bit

plane decomposition and the scanning n-tuple clas-

sifier,” in Proceedings of 8th International Workshop

on Frontiers in Handwriting Recognition), Naigara-

on-the-lake, Canada, August 2002, pp. 207–211.

[13] S. Hoque, M.C. Fairhurst, and R.M. Guest, “The ef-

fect of inhibition-compensation learning scheme on

n-tuple based classifier performance,” in Proceed-

ings of 16th International Conference on Pattern

Recognition, Quebec City, Canada, August 2002, pp.

452–455.

[14] S. Lucas and A. Amiri, “Statistical syntactic meth-

ods for high performance ocr,” IEE Proceedings Vi-

sion, Image and Signal Processing, vol. 143, no. 1,

pp. 23–30, February 1996.

[15] S. M. Lucas, “Improving scanning n-tuple classifiers

by pre-transforming training data,” in Proceedings of

International Workshop on Frontiers in Handwriting

Recognition-V, ESSEX, UK, 1996, pp. 143–146.

[16] G. R. Wilson and B. G. Batchelor, “Algorithm for

forming relationships between objects in a scene,”

IEE Proceedings Pt. E, vol. 137, no. 2, pp. 151–153,

March 1990.

[17] G. R. Wilson, “Properties of contour codes,” IEE

Proceedings Vision Image and Signal Processing,

vol. 144, no. 3, pp. 145–150, June 1997.

[18] NIST Special Databases 1-3, 6-8, 19, 20, National

Institute of Standards and Technology, Gaithersburg,

MD 20899, USA.

