
HAL Id: inria-00108428
https://inria.hal.science/inria-00108428

Submitted on 20 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The SIMGRID Project: Simulation and Deployment of
Distributed Applications

Martin Quinson, Henri Casanova, Arnaud Legrand, Kayo Fujiwara

To cite this version:
Martin Quinson, Henri Casanova, Arnaud Legrand, Kayo Fujiwara. The SIMGRID Project: Simula-
tion and Deployment of Distributed Applications. The 15th IEEE International Symposium on High
Performance Distributed Computing (HPDC’06), Jun 2006, Paris, France. �inria-00108428�

https://inria.hal.science/inria-00108428
https://hal.archives-ouvertes.fr


The SIMGRID Project

Simulation and Deployment of Distributed Applications

Arnaud Legrand

CNRS, MESCAL INRIA project

Laboratoire Informatique et Distribution

Martin Quinson

Université Henri Poincaré, Nancy 1

LORIA

Henri Casanova Kayo Fujiwara

Dept. of Information and Computer Science

University of Hawai‘i at Manoa

The development of robust and efficient distributed ap-

plications has been a research and engineering challenge for

several decades, and has recently reached a new dimension

with the advent of large-scale distributed systems. Whether

one develops a parallel computational science application

with MPI for a commodity cluster, a scientific workflow

for high-end grids, a network monitoring application that

is supposed to scale to thousands of node in large-scale

grids, or a peer-to-peer file-sharing application running on

tens of thousands of volatile Internet hosts, one strives to

develop distributed algorithms as well as resource alloca-

tion strategies that exploit the strengths and tolerate the

weaknesses of the underlying computing platform. Unfor-

tunately, doing so entails addressing many challenges. In-

deed, reasoning about the performance of an application on

a possibly complex computing platform is extremely dif-

ficult and analytical models often rely on simplifying and

unrealistic assumptions. Consequently, one must resort to

direct experimentation. However, performing relevant ex-

periments on real-world platforms can be a difficult propo-

sition. First, a fully implemented application is required,

while one would like to test and compare alternate designs

and algorithms in the planning stage of application devel-

opment. Second, experiments are limited to platform con-

figurations at hand, which limits their significance and gen-

erality. Third, in many cases experiments are not repeatable

(e.g., due to non-deterministic resource sharing with other

users/applications), which makes it at best extremely diffi-

cult to compare alternate approaches fairly.

In the face of these difficulties, researchers and devel-

opers typically use simulation. However, accurate and vali-

dated simulation models can be elusive. Furthermore, there

is an accepted notion that to be more accurate simula-

tions must be more complex, which makes them must more

time consuming (with pure emulation as an extreme). This

problem gets exacerbated when studying large-scale, long-

running applications on large-scale platforms. Finally, there

is the common concern that the code written to simulate

the application is markedly different from the real applica-

tion code, raising two issues: the two codes may in fact be-

have differently; and the effort spent writing the simulated

code is wasted.

This poster presents the SIMGRID project, which seeks

to address the aforementioned challenges and issues. The

SIMGRID software architecture comprises four main com-

ponents: SURF, MSG, GRAS, and SMPI. The last three

components provide APIs for implementing, simulating

and/or deploying distributed applications. The first compo-

nent, SURF, is a fast and accurate simulation engine. The

poster describes all four components in terms of their goals,

their usage, and their functionality, including experimental

validation results when applicable. We review each compo-

nents below.

SURF (Simulation Kernel) A key question for the simu-

lation of distributed applications on distributed platforms is

that of resource sharing: what fractions of a resource’s de-

livered power (e.g., CPU cycles per second, bytes of data

transfered per second) are allocated to application tasks that



utilize this resource concurrently? One possibility for simu-

lating resource sharing is to use low-level simulation mod-

els, such as packet-level network simulation (e.g., NS-2)

and execution of actual application code on top of a vir-

tualization layer (e.g., Microgrid), so that resource shar-

ing emerges naturally (e.g., via packet interleaving). Un-

fortunately, this approach is expensive, with simulation

times possibly longer than simulated times, which is pro-

hibitive for simulating long-running applications on large-

scale platforms. Instead, SURF considers the platform as a

set of resources, with each of the simulated concurrent tasks

utilizes some subset of these resources. SURF computes the

fraction of power that each resource delivers to each task

that uses it by solving a constrained maximization problem:

allocate as much power as possible to all tasks in a way that

maximizes the minimum power allocation over all tasks, also

called Max-Min fairness. SURF provides a fast implementa-

tion of Max-Min fairness. Via Max-Min fairness, SURF en-

ables fast and realistic simulation of resource sharing (e.g.,

TCP flows over multi-link LAN and WAN paths, processes

on a CPU). Furthermore, it enables trace-based simulation

of dynamic resource availability. Finally, simulated plat-

form configurations are described in XML using a syntax

that provides a unified abstract basis for all other compo-

nents of the SIMGRID project (MSG, GRAS, and SMPI).

The poster presents the basics of Max-Min fairness, an ex-

ample simulated platform, and validation results.

MSG (Rapid Distributed Algorithms Prototyping) The

MSG module provides an API for the easy prototyping of

distributed applications by letting users focus solely on al-

gorithmic issues. Simulations are constructed in terms of

concurrent processes, which can be created, suspended, re-

sumed and terminated dynamically, and can synchronize

by exchanging data. A major difference between MSG and

the next two modules, GRAS and SMPI, is that all simu-

lated processes are in the same address space. This simpli-

fies development of the simulation by allowing convenient

communications via global data structures. In other words,

while MSG can accurately simulate the interactions taking

place in a distributed application, including communication

and synchronization delays, the simulated application can

be implemented with the convenience of a single address

space. The poster motivates MSG and presents an illustra-

tive example of its usage and functionality.

GRAS (Development of Production Distributed Appli-

cations) The GRAS module is a complete environment for

the rapid development of real-world distributed applica-

tions. A major added functionality of GRAS, when com-

pared to MSG, is that applications built with GRAS can run

in simulated mode but also in the real world. Furthermore,

this does not require any code modification. Key portions of

the application code are automatically benchmarked so that

the application simulation can be instantiated on the fly. As

a result, GRAS provides a full-fledge environment to de-

velop and deploy production distributed applications with

the comfort of simulation for testing, debugging, and evalu-

ation. GRAS provides a high-performance communication

layer that allows easy and efficient cross-architecture com-

munication of complex data structures. GRAS is portable

and is available for Linux, Mac OSX, Solaris, AIX, IRIX

and was validated on twelve CPU architectures. As for

MSG, the poster motivates GRAS and illustrates its use and

functionality with an example.

SMPI (MPI Applications and Heterogeneous Platforms)

MPI is the standard programming interface for parallel

computational science applications. Many researchers and

practitioners are interested in studying the behavior of MPI

applications in various heterogeneous environments (both

networks and CPUs), which they do not have at their dis-

posal. SMPI is meant to enable such studies. Using the same

benchmarking techniques as the ones developed in GRAS,

users can annotate an existing application to indicate which

portion of the application should be simulated, Application

execution can then then be simulated on arbitrary heteroge-

neous platforms (thanks to SURF). Although SMPI is still

work in progress, the poster motivates it and presents an ex-

ample of its future use.

The four components of the SIMGRID framework together

provide solutions and tools for many of the challenges faced

by researchers and developers when designing, prototyp-

ing, evaluating, comparing, and deploying distributed ap-

plications, as presented in this poster. A draft version of the

poster is included with this submission.


