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Dynamique non réguliére de la rupture par une approche
de zones cohésives.

Résumé : Cet article porte sur la compréhension, la prédiction et la simulation numérique
de la rupture dynamique d’une grande variété de matériaux et de structures. La contribution
principale concerne la prédiction du processus de rupture complet : amorcage de la fissure,
sa croissance, sa propagation et la rupture finale jusqu’au comportement post-rupture comme
le contact unilatéral et frottement sec entre les fragments. La nouvelle approche présentée
dans ce papier, dénommée "Non Smooth Fracture Dynamics” est basée sur trois points prin-
cipaux: a) une approche multi-corps surfacique/volumique s’appuyant sur des conditions
aux limites mixtes entre les éléments finis et les corps rigides volumiques b) le développe-
ment d’une formulation générique des modéles de zone cohésive pour une grande variété de
matériaux et de phénoménes physiques et enfin c¢) un cadre spécifique de dynamique non
réguliére basé sur inclusion différentielles & mesure et un schéma d’intégration implicite per-
mettant la résolution numérique des évolutions discontinues, telles que les impacts dus aux
contraintes unilatérales.

Mots-clés : Modéle de zone cohésive, dynamique de la rupture, comportement non régu-
lier, inclusion différentielle, frottement, Mécanique du contact, endommagement, simulation
numérique
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1 Introduction

This article is devoted to the comprehension, the prediction and the numerical simulation
of dynamic fracture for a wide variety of materials and structures. The main contribution
concerns the prediction of the entire fracture process from crack initiation, growth, propaga-
tion, and final rupture, to post fracture behavior such as unilateral contact and dry friction
interactions between created fragments after fracture.

The phenomena of interest are : (i) sophisticated local behaviors in the process zone of
the cracks such as elastoviscoplasticity, strong thermal coupling, reconsolidation under high
pressure or high temperature, (ii) complex behaviors in the fracture plane such as contact,
friction and dilatency (iii) various crack evolutions as initiation/arrest, branching, local or
global mixed modes, (iv) post fracture characterizations such as overall energy balance, size
of fragments, etc.

The loadings of interest are any loading leading to non negligible local inertia effects.
The condition of dynamic fracture is obtained as well as for rapidly applied loading (e.g.
impact) as for high speed crack propagations even under macroscopic quasi static loading
[Freund, 1990].

The materials of interest are any standard deformable solids and rigid bodies, with a
particular interest for pure brittle materials, elastic plastic materials and heterogeneous and
graded materials. For the pure brittle materials, the difficulty is to determine the effective
properties of a cracked media in which cracks propagate at a speed of the same order of
magnitude than the elastic waves emitted between cracks. For the elastic plastic materials,
the simulation of the competition between plastic band localization and crack initiation is
the main hard challenge. Finally, for the heterogeneous and graded materials, the estimation
of the equivalent effective properties together with the necessity of some local approaches
yields a nontrivial problem.

Classical continuum based theories such as continuum damage models where fracture is
correlated to progressive degradation of material properties (e.g. for brittle materials [Curran
et al., 1987, Espinosa and Brar, 1995, Seaman et al., 1985]) or such as models based on global
energy balance [Freund, 1990, Grady and Kipp, 1993] can not by definition suitably take into
account discrete crack paths neither interactions between nucleations, coalescences, growths
and propagations of main cracks in presence of complex microstructures. Conversely, some
modern approaches are devoted to dynamic fracture in such a variety of materials. Four
main classes of approaches may be distinguished : Molecular Dynamics (MD), Cohesive
Zone Model (CZM) or Embedded Process Zone (EPZ), Plasticity-Free Strip (PFS) or coupled
PFS-CZM and Virtual Internal Bound (VIB). Various advantages and disadvantages of each
approach can be found for example in Camacho and Ortiz [1996], Zavattieri and Espinosa
[2001], Thiagarajan and Misra [2004], and Wang and Nakamura [2004], and are briefly
summarized in the sequel.

The Molecular Dynamics (MD) method consists in simulating the behavior of millions
of atoms using some inter-atomic potentials. The capabilities and the range of applications
of such a method are recalled in the recent paper of [Abraham, 2003]. For example, full
ab initio simulations have proved that the roughness of the crack plane and the limited
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crack velocity may be explained by dynamic instability arising over one third of the surface
sound speed Abraham et al. [1998]. This result obtained at the lower scale confirms the
observations of the pioneer work of Dally [1979] and the recent quantitative observations
and interpretations of Fineberg and Mader [1999] on facies and conditions of microbranching
in PMMA as an instability mechanism. In order to extend the MD approach at larger scales
without drastically increasing the computational cost, Rudd and Broughton [1998] have
proposed a Coarse-Grained Molecular Dynamics (CGMD) method devoted to the simulation
at the micron-scale. In the same way, Abraham et al. [2000] have coupled the MD method in
the crack tip zone with conventional continuum finite elements simulation in the rest of the
bulk material. The MD method and its variants are not yet practical for large parametric
studies due to their strong dependency on the choice of inter-atomic potentials and on the
huge computational cost.

Cohesive Zone Models (CZM) (or sometimes called ’embedded process zone models’)
may be at the present time the most popular approaches to simulate the dynamic fracture
in brittle, ductile or heterogeneous materials at any scale (grain-scale to structure). The idea
of cohesive zone was first introduced by Dugdale [1960], Barenblatt [1962] and Rice [1968]
concerning initially only the normal behavior (behavior during a normal separation, i.e.
mode I in the rupture classification modes) at the crack tip zone. The tangential behavior
(modes IT and IIT) was first taken into account by Ida [1972] for dynamic fracture of earth’s
crust and by Palmer and Rice [1973] for progressive failure of an inclined layer of clay under
gravity. The unilateral contact in such an approach was introduced by Frémond [1982] (no
interpenetration of crack lips after fracture). Needleman [1987] has considerably extended
the concept of cohesive zone by introducing new models of decohesion based on the atomistic
works of Rose et al. [1981, 1983]. Those models were transformed into fracture models by
Tvergaard [1990] and Needleman [1992] by the introduction of the irreversibility in the local
behavior, i.e. a surface damage, and were coupled at the same time to the post fracture fric-
tion [Tvergaard, 1990] and to thermally induced residual stresses [Tvergaard, 1991]. It was
then possible to simulate crack initiation without any ad hoc criterion, propagation (crack
path emerges naturally from the external loading without any convenient assumption on the
crack plane) and final rupture by incorporating CZM at interfaces between each element
of a finite elements discretization [Costanzo and Walton, 1997, Needleman and Rosakis,
1999, Xu and Needleman, 1994]. This multibody cohesive framework has shown its ability
to predict complete fracture process of elastic-plastic materials under quasi static loading
[Needleman, 1990, Tvergaard and Hutchinson, 1992] or submitted to crack tip instabilities
[Xu and Needleman, 1994], of brittle materials under impact [Camacho and Ortiz, 1996,
Zavattieri and Espinosa, 2001], of elastic viscoplastic materials [Siegmund and Needleman,
1997], of composite materials [Needleman and Rosakis, 1999, Siegmund et al., 1997, Xu et al.,
1997] and of graded materials [Wang and Nakamura, 2004, Zhang and Paulino, 2005]. Most
of the results obtained in this framework were given in two dimensions; in three dimensions,
the feasibility of using such a multibody cohesive framework to simulate dynamic fracture
from initiation to rupture was established by Monerie [2000] and Pandolfi et al. [2000]. From
the point of view of cohesive zone modeling, one distinguishes the so-called intrinsic models
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(CZM with initial compliance) and extrinsic models (CZM without any initial compliance).
Recent comparisons between intrinsic and extrinsic models for dynamic crack branching and
for dynamic crack instability can be found respectively in Falk et al. [2001] and in Kubair
and Geubelle [2003]. From the point of view of numerical implementations, two main choices
are possible. CZM could be implemented as mixed boundary conditions (MBC) between
volumetric finite elements or as cohesive elements (i.e. surface finite elements). This last
class of implementation is referred to cohesive-volumetric finite element (CVFE) and tends
to be widely developed [Geubelle and Baylor, 1998]. For the CVFE scheme, the relative
position of cohesive elements between volumetric elements seems to have a strong influence
in the case of finite slips. The MBC scheme does not meet this difficulty. Since we are
interested in this paper by a modeling and a numerical implementation of dynamic fracture
problems in the most general case, we retain in what follows the MBC scheme. However,
the ’cohesive-volumetric finite element’ name being well-known and clear, it is employed in
this paper, but having the meaning of a surface-volumetric multibody approach using mixed
boundary conditions between each volumetric finite elements.

Two main limitations of the CZM models are their possible instability due to their
softening character [Chaboche et al., 2001, Monerie and Acary, 2001] and their inability to
predict crack opening in the case of elastic-perfectly plastic materials when the ratio between
the peak traction stress of the CZM and the yield stress of the bulk material is lower than
about 3.0 [Tvergaard and Hutchinson, 1996]. The first apparent limitation is deeply further
studied in this article. The second one has conducted to the development of Plasticity-Free
Strip (PFS) model by Suo et al. [1993]. In this model, a thin elastic strip is incorporated
between the crack and the surrounding plastic zone and the crack propagation is governed
by a local criterion on the energy release rate. Due to the sensitivity of this model to the
thickness of the PFS and this limitation when the crack separation stress is small, Wei and
Hutchinson [1999] have developed an EPZ-PFS unified model which progressively evolves
from one model to the other depending on material parameters. This model is powerful
for a wide range of elastic plastic parameters but has the disadvantage to incorporate both
parameters of an EPZ model and of a PFS model. Finally, the PFS model or the EPZ-PFS
unified model requires a prior definition of the crack path.

The Virtual Internal Bound (VIB) model, developed by Gao and Klein [1998] and Klein
and Gao [1998], consists in incorporating the fracture law directly into the constitutive model
of standard finite elements schemes. In each continuum finite element, randomly distributed
material particles are connected by a random spatial network of the phenomenological cohe-
sive internal bonds. The macroscopic behavior of this kind of representative volume element
from the point of view of atomistic fracture is obtained by equating the strain energy func-
tion on the continuum level to the potential energy stored in the cohesive internal bonds.
The corresponding fracture law depends on the local deformation around the crack tip.
Althoughthe VIB model has been successfully used (see for instance by Thiagarajan and
Misra [2004]), to simulate fracture of anisotropic media, it seems to be unstable in the case
of heterogeneous materials and requires a large computational cost.

RR n° 6032
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The aim of this article is to simulate the fracture dynamics (from initiation to post-
fracture) of a wide variety of materials ranging from rigid, brittle or ductile homogeneous
bodies to heterogeneous materials without a prior knowledge of crack paths and including
complex phenomena such as friction or wear on the crack lips possibly with finite slips.
Regarding advantages and disadvantages of various methods, the cohesive zone approaches
are ideal candidates to achieve this goal without supercomputer facilities. An additional
motivation for the choice of CZM is the clear mechanical sense of the two main parameters
of CZM: the peak traction stress drives the initiation of fracture and the cohesive energy (or
equivalently the critical energy release rate or critical stress intensity factor) drives the crack
propagation independently of the specific form of the traction-separation curve [Monerie
et al., 1998, Zavattieri and Espinosa, 2001]. The new Non Smooth Fracture Dynamics
(NSFD) approach presented in this paper is thus based on three main features:

1. a surface-volumetric multibody approach using mixed boundary conditions between
each volumetric finite elements and/or rigid bodies (Figure 1), sometimes wrongly
called (when no confusion is possible) cohesive-volumetric finite element method;

2. the development of a generic formulation of the cohesive zone models dedicated to a
wide variety of materials and physical phenomena, and incorporating unilateral contact
and Coulomb’s dry friction; such a formulation is referred in this paper to "Enhanced
Cohesive Zone Models’ (ECZM) ans is associated with numerical techniques arising
from the mathematical programming community;

3. a specific non smooth dynamical framework based on measure differential inclusions
and an associated #mplicit time—integration scheme allowing the numerical treatment
of non smooth events such as impacts due to unilateral constraints; this scheme is
referred as ’Non Smooth Contact Dynamics’ (NSCD).

As we will show, these two last features considerably improve the classical CVFE scheme in
the context of the dynamic fracture. As an example of this improvement, one can consider
the importance of the unilateral contact in the cohesive zone models, which ensure the non
penetrability of the volumetric finite elements when the stress waves lead to compression,
and the difficulty to numerically integrate such unilateral constraints within a dynamic
framework when nonsmooth events are expected.

Outline Section 2 is dedicated to the presentation of the enhanced cohesive zone concept.
A generic formulation is presented and the link with other well-know cohesive zone models
is made. Finally, the particular interest for this model is described. Section 3 is devoted
to some practical aspects of using cohesive model. The question of the uniqueness of the
solution, the equivalence and the stability of extrinsic and intrinsic models is tackled. To
complete this section, the prominent role of the dynamics as a relaxation ingredient is
evoked. In Section 4, the nonsmooth dynamical framework is settled in terms of differential
measure formulation. Some comments and explanations are given to justify this approach.
The numerical time-integration and the resolution of the one-step discretized problem is
presented in Section 5. Section 6 concludes the paper.
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Figure 1: The surface-volumetric multibody approach: each mesh is considered as an in-
dependent body connected to each other using cohesive zone model as mixed boundary
conditions.

2 Enhanced Cohesive Zone Models: from crack initiation
to post fracture

2.1 Notation

In this section, the main notation is introduced. The attention is focused on the nor-
mal/tangent decomposition of the variables across the interface between two bodies.

For i = 1, 2, let Q° C R? (d = 2, 3) being two bodies with sufficiently smooth boundary
0 and subjected to body forces p’b’ and external forces T?, where rho' is the mass
density. The boundary 00 is composed of three distinct parts: the potential contact zone
I' between Q' and the outer, the zone 9Q, where displacements are prescribed, and the
zone 0%, where forces are prescribed, with 9Q° = T¢ U 9Qi, U 9Q%. Under the small
displacements assumption, the potential contact zone between the two bodies and its unit
outer vector can be respectively defined as I'. = I'! = I'?, and n(z) = n'(z) = —n?(z)
(n'(x) being the unit outer vector of Q?). We denote by u = {u', u?} the displacement
field in Q' U Q2% and by [u] = u? — u! the displacement jump across the boundary I'.. The
internal forces associated to these variables are the stress field o = {o!, 0%} in Q! U Q?
and the contact force R on T'. (Figure 2). In what follows, the subscripts N and 7" denote
respectively normal and tangential components of the total force (R = Ryn + Rr), of the
cohesive force (R°" = R%"n + R$?") and of the displacement jump ([u] = unxn + ur).

RR n° 6032



8 Acary € Monerie

Figure 2: Sketch of cohesive zone model and notations: two bodies in interaction (left), and
details across the interface including the normal/tangent decomposition of the displacement
jump (right).

2.2 Generic formulation

The two main cohesive failure models used in the literature are the potential-based law of
Tvergaard [1990] and Xu and Needleman [1994] and the linear law of Camacho and Ortiz
[1996] and Ortiz and Pandolfi [1999]. During the four past decade, many other models were
also developed; to cite a few of them, Dugdale [1960], Barenblatt [1962], Palmer and Rice
[1973], Needleman [1987], Rice and Wang [1989], Needleman [1990], Tvergaard and Hutchin-
son [1992], Michel et al. [1992], Michel and Suquet [1994], Allix et al. [1995], Chaboche et al.
[1997], Geubelle and Baylor [1998], Raous et al. [1999], Varias and Massih [2002], Jin et al.
[2002], Espinosa and Zavattieri [2003], and Li et al. [2006]. These models attempt to conve-
niently describe the evolution of the cohesive force R°" together with the displacement jump
[u] according to the type of material considered by their authors: brittle or ductile homo-
geneous materials, heterogeneous materials, functionally graded materials, particle-matrix
interfaces, adhesive joints, concrete, clay, etc. For an extensive review on the models see
Monerie [2000], Chandra et al. [2002], and Perales [2005]. These models have various shape,
various mechanical parameters; they are based on various formulations (a simple law, a
potential-based model, a thermodynamics-based model); they are sometimes dedicated only
to the normal behavior of the cohesive zone, sometimes only to its tangential behavior, or
sometimes both. Sometimes, the effects of the unilateral or regularized contact, the effect
of Coulomb’s friction before, during, or after decohesion are included in the model although
most of the model neglect them.

In this paper, we claim firstly, that all of these models can be written in a unique for-
mulation. Secondly, that they can be coupled with a non regularized unilateral contact and
Coulomb’s friction model, including a progressive transition from a perfect cohesive zone to

INRIA
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a pure frictional contact zone. This type of formulation is called ’enhanced cohesive zone
model’ (ECZM).

This formulation, based on the works of Raous et al. [1999] and Raous and Monerie
[2001] on the soft coupling between adhesion and frictional contact, is given by equations
(1)-(4) for the case of intrinsic models.

— (RN + R?\(f)h) € OIg+(un) (1)
(Rr +R§$") € 0 (ur(B)|Ry + RY" || ar ||) (2)
R = K(0)-[u] and g (B, 8, un, ur) =0 (3)

where Ix is the indicator function of the set X, u is the Coulomb’s friction coefficient, [ is
a variable of surface damage, k() and g are given functions, and K(f) is a second-order
tensor giving the progressive softening of the surface behavior during the decohesive process:

K(B) = <an ®n+ CTM> , @)
[[ur®

the quantities Cy and C7 being respectively the initial normal and tangential ’stiffnesses’
(or the so-called ’initial slope’) of the cohesive zone. The surface damage parameter 3,
initially introduced by Frémond [1987, 1988], and the function () allow a soft transition
from the decohesion law described by (3) to the contact-friction law given by (1) and (2):
0 =1 when the cohesive zone is undamaged, 0 < # < 1 when the cohesive zone is partially
damaged, and 3 = 0 when the cohesive zone is fully damaged. Usually, in order to avoid any
friction before the beginning of the decohesive process, the function x(/3) has to be equal to
zero when [ is still equal to 1; and, in order to be in a pure frictional contact state after
complete decohesion, the function () has to be equal to 1 when 8 vanishes. The function
g is often describing a softening behavior or a pure brittle one, and leads to a decrease of (3
from a initial value lying between 1 and 0 to zero.

In the case of extrinsic models, the couple of equations in (3) has to be slightly modified
in order to give a direct description of R°" without involving a linear function of u through
the ’stiffness’ tensor K (3). The most simple choice is to postulate that the cohesive force
does not depend explicitly on the displacement jump [u] but only on 8. For instance, the
following form can be chosen

ROM = RN and g (5’, 8, un, uT) -0 (5)

where R%" is the maximum adhesive force. In a more general setting, eztrinsic models can

max

be written as function of 5 such as

R =1(8) and G (5,8 uy, ur) =0 (6)
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where T is a given function associated with the shape of the cohesive force. An explicit
dependence on [u] would involve an equivalent tangent stiffness which contradicts the as-
sumption of the extrinsic models. Nevertheless, an implicit dependence on [u] is given
throughout the function g.

More generally, the cohesive zone model for the normal part can be expressed by the
following inclusion

Ry € 8UN\IJ(UN7B)7 (7)

where U(uy, () is the free energy of the interface which can be chosen of the form:

V(un, B) = (B, un) + I+ (un) + Ijo,11(5)- (8)

Comparing to the equation (1), the equations (7) and (8) yield to the following form for the
cohesive force,

R?\(fjh = 8“1\1 d}(ﬂv UN)' (9)
82¢(ﬂ7 UN)

8211,1\/
lead to an extrinsic model. Concerning the evolution of 8 with [u], the second law in (3)
can also be expressed in a slight different way by considering a law of the form:

If the function v is sufficiently regular, any choice of ¢ such that = 0 would

B =0AX), (10)
where x is the thermodynamical force associated to the damage variable by
x = ¥ (un, ). (11)

Such a model proposed in the pioneering work of Frémond [1987, 1988] has been studied from
a mathematical point of view by Point [1988], and Point and Sacco [1998]. The function
A, which can be understood as a pseudo-potential of dissipation, may be chosen as the
indicatrix function of a set C. In this case, we obtain a brittle behavior for the interface.
Most of intrinsic cohesive zone model of the literature are defined by the couple of
equations (3) and (4), and in what follows, for a given CZM defined by these relations, the
formulation (1)-(4) is then called the ECZM formulation of the initial CZM (3)-(4).

2.3 Some particular examples

In this section, the ECZM formulation (1)-(4) is detailed for two particular cases of intrinsic
models. The first model is the ECZM formulation of the law proposed by Tvergaard [1990],
which is one of the most wisespread cohesive zone model in the literature. The second model
is a new model proposed by Perales et al. [2005], which will be used later in the remaining
part of this paper.

INRIA



Nonsmooth fracture dynamics using a cohesive zone approach 11

2.3.a The standard cohesive zone model of Tvergaard [1990]

The standard Tvergaard’s cohesive law consists in introducing the irreversibility of the in-
terfacial behavior in the law of Needleman [1987]. In two dimensions, this model is based
on a non-dimensional parameter related to the displacement jump [u]:

2 2
unN ur
\ = = — 1, 12
\/< ON ) " <5T > 12)
and on a normalized piecewise quadratic function:

2
7RCOh (1—-X)? for0<A<1, F()\) =0 otherwise, (13)

:Z max

F)

where § and dr are critical values at which the interface is broken, and R%” is the maximum
normal traction reached before the onset of the decohesion (the peak stress). The normal
traction R$?" and the tangential traction R$?" are given by:
U ~ U ~
Ry = S F (/\) and  R§" = izlF (A) : (14)
N T
where i is a parameter coupling normal and shear tractions and X describes the irreversibility
of this cohesive zone model. Denoting by ... the maximum value ever reached by A, we
have:

max

\ = max {A A} - (15)

From the point of view of the ECZM formulation, this well-known model can be reformu-
lated and closely coupled with unilateral contact and Coulomb’s friction using formulation
(1)-(4), with:

27 REOh 27 Reoh
CN = ZE and CT = ZI? (16)
g (8. 8. uw, ur) = B —min {(1 =% fuia} (17)

where ..., the minimum value reached by 3.

In this compact formulation, the quantity 8 has the meaning of a damaged ’stiffness’
over an initial ’stiffness’ (5 decreases from 1 to 0 with ||[u]||), and the standard Tvergaard’s
law is thus extended to frictional contact. This extension can be completed by incorporating
a progressive transition from cohesion to friction giving a particular form to the function

r(B), as:
k(B) =(1—p)° with s =1, 2or 3, for example. (18)

The resulting ECZM is plotted in Figure 3, and it should be noticed that the cohesion-
friction progressive transition incorporates in the decohesion process an energy dissipated
by friction, which stays very small until the failure is not completely reached.

RR n° 6032
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1
o
=~ Tvergaard-based
e ECZM
o
+
=
&
IRy + R§¢?"|
#e(B) = cor

max

\ «initial
\ Tvergaard’s
\ N model

O 1/3
lur|l/oT

Figure 3: Enhanced version of the standard Tvergaard’s cohesive law introducing a soft cou-
pling with unilateral contact and Coulomb’s friction (formulation (1)-(4)). Normalized tan-
gential traction ||Ry + RS2"|| /R" versus normalized tangential displacement jump ||ur||/dr
for ¢ = 1 in the case of unilateral contact (uy = 0 and (Ry + Rf\‘,’h) > 0 constant, quantity
pr(B) defined by (18) with s = 3), and various energies at a given decohesion state: energy
dissipated during the decohesive process (light gray area), elastic stored energy (dark gray

area), energy dissipated by friction (black area).

2.3.b A new ’enhanced cohesive zone model’

In order to underline the relevance of the ECZM formulation (1)-(4), a second intrinsic
model is here detailed. This model, previously proposed by Perales et al. [2005], derives
from a surface damage law initially proposed by Michel and Suquet [1994] as:

o (5. 8, ux wr) =6 = min {50 ( Dpo.a (1) + Dt s () 10 )}

where Dy, () is the door function equal to 1 if € [a, b and equal to 0 otherwise, . is a
critical displacement jump and [y is an initial value of the surface damage parameter 3.
Anticipating on Section 3.1, it should be already mentioned that the main feature of
this ECZM, from the point of view of the cohesive part of the law, is to have its maximum
negative slope (maximum slope in the softening part) just at the end of the decohesion,
i.e. at the critical displacement where the failure occurs. As we will latter underline, the
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Figure 4: The Enhanced Cohesive Zone Model used in this paper (formulation (1)-(4)
and equation (19)). Normalized tangential traction ||Rr + R%"||/RS" versus normalized
tangential displacement jump |ur||/(3d.) in the case of unilateral contact (uy = 0 and
(Ry +Rs2") > 0, quantity ur(3) defined by (18) with s = 3), and various energies at a given
decohesion state: energy dissipated during the decohesive process (light gray area), elastic

stored energy (dark gray area), energy dissipated by friction (black area).

instabilities related to the softening behavior of the cohesive laws are correlated to this
maximum negative slope: if instabilities are suspected, the smaller the cohesive force at
the maximum negative slope, the better the energy balance. From this point of view, the
cohesive law incorporated in this ECZM belongs to the ’most stable cohesive zone models’.
This appellation is here enforced by the fact that the proposed cohesive law has a non
negative slope at the peak stress: the suspected instabilities can never occur at the onset
of decohesion. The other main feature of this ECZM is that any energy is dissipated by
friction before the onset of decohesion. This situation is illustrated in Figure 4.

The effects of the strict unilateral contact and of the progressive transition from decohe-
sion to friction incorporated in the ECZM-formulation (1)-(4) are underlined in Figure 5.
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c-a-d Unloading
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c-e Reloading
e-a  Unloading
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Figure 5: The Enhanced Cohesive Zone Model used in this paper (formulation (1)-(4) and
equation (19)). Left: normalized normal traction (Ry+R$")/RS" versus normalized normal
displacement jump wuy /07 during a traction-compression loading path (ur = 0 and (Rp +
RS") = 0). Right: normalized tangential traction (Rz + R?")/R¢" versus normalized
tangential displacement jump ur/ér during cyclic loading with unilateral contact (uy =0

and (Ry + R$?") > 0, quantity ux(3) defined by (18) with s = 3).
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2.4 Interests and comments

As shown in the two examples above, the ECZM formulation has many advantages. It
is a very compact formulation of any cohesive closely coupled with unilateral contact and
Coulomb’s friction law and with a soft transition from the cohesive behavior. It should be
underlined that in absence of cohesive force (i.e. R = R%°" = 0 in equations (1) and (2))
the standard Signorini-Coulomb relationships are obtained:

Ry >0, uy =0, Ryun =0, (20)

R H <M|RN|:>uT:0
Rl < Ry, R " 21
IRl < 1Rl { IR7|| = p|Ry| = 3X >0, 4 = —ARy. (21)
In these Signorini-Coulomb relationships, the quantity x(5) do not appear due to the fact
that the condition R%" = R$?" = 0 impose 3 = 0, and (8 = 0) = 1 as mentioned in
section 2.2.

This coupling between a cohesive law, unilateral contact and Coulomb’s friction law is
of great interest in dynamics fracture. On one hand, the friction plays a determinant role
in the fracture of heterogeneous materials: the mismatch between the Poisson coefficient of
each phase leads to a mixed mode fracture at the interface between the constituents, and
the resulting friction at the interface takes an important place in the overall toughness of
the composite, during the fracture process and after the complete decohesion of the interface
(e.g., fiber pull-out in fibrous composites). The role of this friction is increased for dynamical
loadings, for which intersonic crack growth along the interface can occur [Needleman and
Rosakis, 1999, Xu et al., 2003]. On the other hand, the unilateral contact plays a deter-
minant role in the fracture of heterogeneous materials as well as homogeneous materials.
For heterogeneous materials, the unilateral contact allows one to conveniently estimate the
normal contact force Ry, which determines the conditions of sticking or frictional sliding
in the Coulomb’s law (21). For homogeneous materials in the context of fracture dynamics
treated by CZM embedded in a continuum simulation, incorporating unilateral conditions in
the CZMs is quite useful: compressive waves can induce interpenetration of volumetric finite
elements. Convenient simulations of fracture dynamics using cohesive zone models have to
take into account unilateral contact conditions and friction. This is the main characteristic
of the proposed ECZM formulation.

Another feature of the (1)-(4) ECZM formulation is that the crack initiation and propa-
gation are outcomes of the simulation and are not obtained using any ad hoc criteria. This
particularity comes both from the CZM incorporated in the ECZM formulation and from
the CVFE scheme.

As far as the interest of the ECZM formulation (1)-(4) is concerned, we finally underline

that this formulation is open enough to be completed with various surface mechanisms as
dilatency, wear or *undrained cracks’. This last point allows one to simulate the presence of
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a pressurized gas of fluid at pressure p inside the growing cracks. In the ECZM formulation,
a normal pressure can be taken into account on the lips of a created crack, i.e. only when
the cohesive zone is broken (3 = 0), by substituting the quantity,

Reoh + pnDyg ) (5) (22)

to R°" in equation (3).

3 Practical use of Enhanced Cohesive Zone Models and
Cohesive-Volumetric Finite Element method

This section is devoted to the analysis of the main bias of the cohesive zone models that can
affect the global response of a structure. The two main features of a cohesive zone model
that can induce a non desirable effect in the numerical simulations are:

o the softening behavior which leads to the ill-posedness of the rate boundary value
problem,

e the internal length that has to be tailored according to the work of separation or
fracture energy, the maximal stress reached at the cohesive zone, the bulk material
properties and the spatial discretization.

In the sequel, the first point is detailed with the help of a mathematical result of Monerie
and Acary [2001] and its physical meaning previously proposed by Chaboche et al. [2001].
The second point is extensively debated in the literature where numerous results can be
found. At the end of this section, a new result giving a lower bound for the initial slope of
the intrinsic cohesive zone models is provided.

3.1 The dynamical relaxation of weakening behavior
3.1.a A condition of uniqueness

The softening behavior of the cohesive zone model rises to an ill-posed rate boundary value
problem. A discontinuity in the response can be observed during quasi-static numerical
simulations. In order to give a convenient mathematical framework to the comprehension of
these "solution jumps", we propose in this section a condition of existence and uniqueness
to the quasi-static separation problem of two elastic bodies Q! et Q2 (see Figure 2) bonded
by a rate-insensitive cohesive zone model without friction. This result was first obtained by
Monerie [2000] and Monerie and Acary [2001].

Let us recall the standard notation of classical spaces of vector-valued functions. The
spaces LP(2),1 < p < +oo are defined by the spaces of Lebesgue-measurable functions
such that || f||rr) = ([, |f[P dz)'/P < 400 and L™ is the space of Lebesgue-measurable
functions such that esssup|f| < 4o0o. The Sobolev’s spaces of order m are denoted by
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Nonsmooth fracture dynamics using a cohesive zone approach 17

WmP(Q) = {v € LP(Q)|D% € LP(Q2),V|a| < m} and are associated to the following norm
[vllwme@) = (X a1<m ||Dav||ip(9))1/p . Finally, the standard notation H™ = W™ is also
used.

Without any loss of generality, vanishing prescribed displacements are considered on the

boundaries of Q! et Q2. The following sets are introduced in three dimensions, that is for
Q' c R*:

vio= {vi e [H'(Q)]%; v' =0 ace. on asz;‘]} (i=1,2), (23)
K = {v=(@"v*)eV;uy >0ae onT.} (24)
V o= VixV? and  H = L>(T.). (25)

The body forces and the surface forces are assumed to have a sufficient regularity:
pb = (p'b',p*b%) € W20, T;[L*(QN)]° x [L*(9%))°) (26)
T = (T'.7%) € W"(0,T; [L*(0Q})]® x [L*(093)]?). (27)

The function ¢ is defined by (Einstein’s convention):
(p,v) = / P v'de +/ - Th'ds, YoeV. (28)
Qi Qi

The assumptions (26) and (27) ensure that ¢ € W2(0,7; V). Finally, we denote by ~viu =
v|r,u® the trace of u’ on T, (for i = 1, 2).

Assuming a rate-independent intrinsic cohesive zone model, the left equation of (3) can
be rewritten as

g =g"([ul), (29)
where g* € H, and the cohesive force R°" can be described as a function ¢ of [u]:
€([u]) = R ([ul) = K o g*([u]) - [u], (30)

with € : [L2(T.)]* — [L2(T.).

Without any friction, and with initial conditions ug € K and §y € H N[0, 1], the quasi-
static frictional contact problem of Cocu et al. [1996] can be extended to the cohesive case
yielding the following variational problem:

w0 =)+ [ €(u)(] = ) ds = (0.0 =) > 0, Vo € K. (31)
where
a(u,v) = /Q e(u’) : A' : e(u")dx. (32)

The following theorem of existence and uniqueness of a solution to the problem (31) can
be given:
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Theorem 1 The application § : k — &([u(k)]) where u(k) € K is the solution of:

a(u,v —u) — (p,v —u) + g k- ([v] —[u])ds 20 YveK, (33)

admits a unique fized point k if \2c1/m < 1. The displacement u(k) is thus the solution of
the problem (31).

proof

Let u(k1) be the solution of (33) for k = k1, and u(k2) be the solution of (33) for k = ko. For
a given k, the existence and the uniqueness of a solution to the problem (33) is a classical
result in variational inequalities [Kikuchi and Oden, 1988]. By substituting v = u(k2) in
(33) for k = k1, and v = u(k1) for k = ko, one obtains after summation:

a(u(ki) — u(kz), u(ki) — u(ksz)) < / (k2 — k1) - ([u(kr)] — [u(k2)])ds.
The coercivity of a (constant m, Korn’s inequality and positive measure of the part of the
boundary where displacements are prescribed), and the Schwarz’s inequality for the scalar
product on [L?(T,)]3, lead to:

mllu(kr) = u(k2)lli o) < k2 = kallzeo [Tu(k)] = [u(k)]llLar.)- (34)

By the definition of the displacement jump, the first triangular inequality gives:
I[u(k)] = [ulk2)ll 20,y < IV7ulk) = Y2ulko) |2 + v ulkn) — v ulks) | 2, (35)

The continuity of the injection from [H'/2(99)]? to [L?(T.)]® and of the trace application
from [H'(2)]? on [H'/2(0Q")]? ensures that there exist two positive constants A\’ (i = 1, 2)
such that:

7' ulkn) = y'ulko)llzy < Auks) = (k)| (o), fori=1,2. (36)
Introducing A = A\! + A2 > 0, and combining inequalities (35) and (36), one obtains:

miu(ks) = uk) By < ke =kl lluth)] - )@y (37)
Moreover, assuming that ¢ is Lipschitz continuous (constant c¢;), we obtain:

cllfu(ke)] = [u(k2)]l| L2 (r.) s

13(k1) — 8(k2)[lL2(r.) <
< Aer|fulkr) — u(ke) | 5 (o)

Finally, the equation (34) gives:

/\261

S(k1) — s(k <
18(k1) = 3(k2)ll 2(r.) < =

k2 — k1llL2(r,)-
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Figure 6: Uniaxial example for the occurrence of ’solution jump’ during a rate-independent
decohesion.

This last inequality proves that the application § is a strict contraction from [L2(T'.)]* to
[L2(T.)]3, if the condition

Mey/m < 1 (38)
is ensured. The application § thus admits a unique fixed point, which ends the proof. O

This uniqueness condition can be illustrated on a simple uniaxial example which consists
of an elastic bar (length L, Young modulus E) bonded to a fixed and rigid substrate by a two
dimensional cohesive zone. The spatial discretization and the corresponding local behavior
are plotted in Figure 6. This example was first proposed in shear by [Monerie et al., 1998]
and in traction by [Chaboche et al., 2001].

Denoting by U the global displacement prescribed on BC, by T the associated stress, and
by u the displacement jump across the cohesive zone, one has:

L
U=u—zT. (39)

In the present case, the cohesive law is given by (30):

T = —£(u). (40)

In the local coordinates (T, u), for a given control displacement U, the local equilibrium is
obtained as the intersection between the straight line

E
-T= E(U —u) (41)

defining the elastic behavior of the bar, and the softening curve T = —¢&(u) (T = 0 for u> §).
In the case of a progressive growing of U from zero, two situations can occur after the peak
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stress: (i) if the ratio k = E/L (absolute value of the negative slope of the straight line)
is large enough, it always exists a local equilibrium and the evolution of the decohesion is
stable, (ii) if the ratio k = E/L is too small, a solution jumps from u, to up > u, (Figure 6).
The elastic strain energy stored in the structure is larger than the one that can be consumed
at the cohesive zone, and the cohesive zone is suddenly broken.

The possibility to obtain two or tree points of local equilibrium is related to the ratio
between the slope k and the larger slope of the cohesive graph in the softening part, i.e. to
the ratio [k|/(supy>y,,, [§'(u)]). The condition of uniqueness of a local equilibrium point is
thus:

sup |0¢&/0u|

u)“peak

<1. (42)

|E/L]

In such an example, is it possible to identify the ratio |E/L| to the constant of coercivity m,

and sup |¢'(u)| to the Lipschitz’s constant ¢; of £(u). If the cohesive graph has an inflexion

point in its softening part, the sup |¢/(u)| is reached for u > u, (that is, for example, the

case with for Tvergaard’s model), otherwise it is reached for u = u, (that is, for example,
the case with for the model of Raous et al. [1999]).

As conclusion, the rate-independent cohesive zone models can lead to some solution
jumps of quasi-static problems. The occurrence of these solutions jumps is due to the weak-
ening part of the cohesive graph associated with the failure process, and is related to the
violation of a condition of uniqueness. In one dimension, this condition states that the
absolute value of the stiffness of the structure concentrated at the cohesive zone has to be
larger than the absolute value of the maximal slope of the cohesive graph in its weakening
portion. In other words, the ’stiffer’ the cohesive law, the more sensitive to solution jump
the structure; the stiffer the structure, the more insensitive to solution jump the cohesive
law. For example, this condition of uniqueness can not be satisfied by a gate-like cohesive
law.

In some circumstances, these solution jumps can be correlated to some instabilities, i.e. to
the existence of infinite wavelength modes [Monerie, 2000, Suo et al., 1992]; and in practice,
FEM simulations fail to converge. The effect of these solution jumps on the stability of
extrinsic and intrinsic cohesive zone models is discussed in the following paragraph.

3.1.b The question of the equivalence and the stability between extrinsic and
intrinsic cohesive zone models

The study of the stability of the cohesive zone models allows one to clarify the question of
equivalence or not between cohesive zone models. We claim the following assertions:
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1. for stable rectilinear crack propagation at constant speed, cohesive zone models are
equivalent in terms of crack propagation if they have the same fracture toughness, and
they are equivalent to the Griffith’s model, (point 1)

2. this result is not ensure for other stable crack propagations, (point 2)

3. at a crack initiation or a dynamic crack branching, extrinsic and intrinsic themselves
cohesive zone models, and intrinsic compared one to each other, are not equivalent,
(point 3)

4. the intrinsic models are less stable than the extrinsic models. (point 4)

Points 1 and 2: the equivalence of cohesive zone models only for stable rectilin-
ear crack propagation at constant speed. Under rectilinear steady-state propagation
conditions (x1 being the direction of propagation and [ the constant crack speed), the equiv-
alence between cohesive zone models one to each other is based on the definition of the
dynamic energy release rate G' [Atkinson and Eshelby, 1968, Freund, 1990, Willis, 1975]:

G = lim {@}, with I(T) = /F[a-n-u—i— (w + ¢)l-ni]ds, (43)

I'—0

where I' is an open contour which translates with the crack tip, n is here the unit output
vector to I, w is the stress work density, ¢ is the kinetic energy density, and I(T") is the
energy flux integral.

The main property of I(T") in (43) is the independancy of path T for steady crack growth
situations. In this case, defining T, as a contour embracing the cohesive zone (the zone
where R°°" do not vanish, length d), we have by symmetry (perfect mode I):

Gi = I(T) = I(T,) = /0 oon-lilds = /0 ReoM (] dz

—d —d

. A
/ Rcoh,a[u] dm+i/ ReM.du], (44)
ot 0

—d

where A is the critical displacement jump over which the cohesive force vanishes. Using
again the fact that we consider here a steady-state propagation, the first term on the right
hand side in (44) is equal to zero (constant crack speed [), and we obtain:

G = / ® ReM . (45)

This last equality shows that cohesive zone models are equivalent when they have the same
fracture toughness ("area under the cohesive curve’): the ’shape’ of the cohesive graph do
not have any influence on the steady-state propagation of a rectilinear crack.
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This result, due to Freund [1990], was numerically verified by Monerie et al. [1998] for
mode II crack propagation. It is completed by another result by Willis [1967] which states
that the model of Barenblatt [1962] and the criterion of Griffith [1920] are equivalent if
d < 1, i.e. if the length the cohesive zone is negligible in front of the total crack length:

— U _e(ueo(d).
,m<41 (i)~ [o- (i) ] 1y, (1/cl)>

where 7 is the surface energy appearing in the Griffith criterion, cf = (A\+2u)/pand ¢ = u/p
are respectively the dilatational and the shear wave speed, and H is the Barenblatt’s modu-
lus of cohesion. This result of Willis [1967], associated to the above result of Freund [1990],
proves the point 1 of our list. The extensive use of the rectilinear steady-state propagation
assumption yields the point 2.

2y = (46)

Point 3: the non-equivalence of cohesive zone models at a crack initiation or a
crack branching. However, Theorem 1 indicates that the ’shape’ of the cohesive graph,
and particularly in its weakening part, has a strong influence in two situations:

e at the crack initiation (i.e. when [ = 0), and

e when it is no more possible to write the quantity defined by the right hand side in
(45): for [u] lying between u, and u}, (see Figure 6), [¢] has no more sense in (44). This
case is reached when a solution jump occurs, which means that the crack no longer
propagates under steady-state conditions.

The proposed uniqueness result (Theorem 1) thus indicates that different cohesive zone mod-
els may not lead to the same response in the case of crack initiation and crack branching,
which explains the point 3. In particular, the difference in crack branching between extrinsic
and intrinsic cohesive zone models numerically observed by Falk et al. [2001] qualitatively
corroborates the result of the Theorem 1.

Point 4: extrinsic models are more stable than intrinsic models. The numerical
comparative analysis of Kubair and Geubelle [2003] indicates that ’the implementation of
intrinsic models is numerically less stable than that of the extrinsic models’. This conclusion
can be explained a priori with the help of the simple uniaxial example in Figure 6. In the case
of an extrinsic model and an intrinsic model having the same fracture toughness, the same
maximum normal traction and the same critical crack opening displacement, the absolute
value of the slope of the cohesive graph in its weakening part is larger for the intrinsic model
than for the extrinsic one. The intrinsic models are thus more sensitive to instabilities than
the extrinsic models. This situation is illustrated in Figure 7 for a linear extrinsic model
and a bi-linear intrinsic model.
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s > |E/L| — unstable

X €'| < |E/L| — stable

Figure 7: Comparison of a linear extrinsic model (straight line) and a bi-linear intrinsic model
(dashed line) having the same fracture toughness, the same maximum normal traction, and
the same critical crack opening displacement: intrinsic models is less stable than the extrinsic
models (quantities |E/L| and |¢’| correspond to equation (42)).

3.1.c The dynamical relaxation

From the numerical point of view, the aforementioned solution jumps may lead to global
discontinuities and overall numerical instabilities. Various methods allow us to overcome
these solution jumps [Chaboche et al., 2001]: mesh refinement, special control procedures,
local control of the solution, non local formulation of the cohesive zone models, viscous
regularization, and dynamic relaxation. The mesh refinement is often not acceptable for
computational efficiency, in particular for brittle materials, where the small value of the
critical displacement jump leads to extremely small mesh sizes. Special control procedures
have to be adapted to each particular considered cases. Local controls of the solution give
some fictitious equilibrium states (between u, and u, on Figure 6) and the energy consumed
by the cohesive zone is no longer a material parameter. Volumic viscous regularizations are
not physically acceptable for every classes of materials, or sometimes the viscous behavior
is not clearly identified by experiments. The introduction of a surface viscous regularization
is a delicate problem: (i) some efforts have to be made in order limit the rate dependency of
the maximum traction (see Chaboche et al. [2001] for a complete analysis), (ii) depending
on the stiffness of the structure, the energy consumed by viscosity at the cohesive zone has a
minimum which is independent of the local displacement rate (Figure 8), and (iii) the energy
consumed by the decohesive process can not be known a priori. The solution of a non local
formulation of the cohesive zone models, first proposed by Frémond [1985] using a first gra-
dient V[ theory, introduces a new internal length, which has no clear physical meaning for
homogeneous materials. All of these methods are of interest in several particular situations,
but in most situations, the dynamic relaxation is the only convenient and natural solution;
firstly, because, the mass is always present and secondly, because any fracture process is by
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itself a dynamical process, even under quasi-static loading.

Ev

EV “\ E\nlunl

0 Ua 5 U, U 0

Figure 8: Viscous regularization of cohesive zone models. Left: Minimum of the energy
consumed by viscosity (gray area) in order to ensure the stability of the decohesive process.
Right: Evolution of the energy consumed by viscosity during a decohesive process as a
function of the local velocity.

The solution retained in this paper is the dynamic relazation. The local interpretation of
this dynamic relaxation is given in Figure 9. In the dynamic version of the uniaxial example
treated on section 3.1.a, the equation (41) becomes:

—T:E(U—u)—%

L
where M is the discrete mass associated to the uniaxial structure between the cohesive zone
and the spring, and S is the section of the bar. If we choose an implicit time discretization
scheme for the first and the second derivative of u with respect to time (47) reads as :

i, (47)

E M E M
—T =— (E — W) Ug41 + <EU + W(QUIC — uk1)) , (48)

where h denotes the time step, the subscript & refers to the approximation of v at time
tr = kh. In this dynamic case, the maximum slope of the cohesive graph in its softening
part sup |¢’| has to be compared to the quantity |M/(Sh?) + E/L| , instead of |E/L| in the
static case. It is readily to see that when the time step vanishes, the term |M/(Sh?) + E/L]
becomes larger than sup |¢’| and the decohesion is always stable. In that sense, the dynamic
formulation is a relaxation of the ill-posedness of the quasi-static boundary value problem
studied in section 3.1.a.

An interesting open issue is to prove an equivalent result to Theorem 1 for a time and
space continuous problem.
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0

u

Figure 9: Local interpretation of the dynamic relaxation (quantities E/L and ¢’ correspond
to equation (42), and M is mass associated to the uniaxial structure depicted in Figure 6):
when the time step h tends to zero, the quantity [M/(Sh?)+E/L| becomes larger than sup |¢’|
and the decohesion stays always stable.

3.2 Internal length of the cohesive zone models and sensitivity to
the added compliance in the intrinsic models

3.2.a Bounding the mesh size in the cohesive/volumetric finite element ap-
proach

The cohesive zone models provide a relation between a stress and a displacement (see equa-
tion (3)), or equivalently between a fracture energy and a critical stress. These models
contain thus intrinsically an internal length, which plays an important role in the answer of
the following two questions:

e how fine should be the mesh of the cohesive/volumetric finite element approach in
order to accurately resolve the cohesive length?

e in the case of intrinsic cohesive models, does the initial slope or the stiffness of the
cohesive model affect the overall elastic properties of the structure?

As we will show below, the answers to these questions require to define an upper and
a lower bound for a non dimensional ratio (involving mesh size, initial slope and Young
modulus of the bulk material). The bounds are often not compatible (antagonist inequality
condition) leading to a non feasible set for the ratio. Theses bounds are usually given
using an empirical and/or numerical way. We give here an exact lower bound based on
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micromechanical arguments and we show how the upper bound can be relaxed. Furthermore,
another fundamental question related to the present one is treated in Section 3.3: does the
cohesive /volumetric finite element method spatially converge when the size of the volumetric
elements vanishes ?

In fact, various length scales arise when using the cohesive/volumetric finite element
method with intrinsic cohesive zone models. The first of these is the macroscopic length
Liruc related to the structure. Depending on the considered problem, this length can match
the size of the structure, the crack length, or the size of the remaining non cracked zone of the
structure. Another physical length scale of the problem is the cohesive length L..,,, which
can be estimated in 3D by the square root of the area over which the cohesive constitutive
relation plays a role. Two other non physical length scales can also be invoked: the mesh size
Lpesn and the length L;,: over which the cohesive constitutive relations are solved. From
the volumetric finite element point of view, it is clearly necessary to have Lgirye > Lipesn in
order to obtain an accurate estimate of the stress field around the crack tip. For the cohesive
surface, the same argument imposes L¢.,, > L, in order to have an accurate resolution
of the cohesive zone length. The numerical simulations of Zhang and Paulino [2005] on the
dynamic failure of homogeneous and functionally graded materials show that the cohesive
zone length is accurately resolved for

1
Lonesh < —Le.m with 7 about 2 or 3, (49)
r

if one identifies L;,+ t0 Lyesp- This result coincides with those of Geubelle and Baylor
[1998] for intrinsic cohesive models and of Camacho and Ortiz [1996] for extrinsic cohesive
models. For an homogeneous material (Young modulus FE,, and Poisson coefficient v,),
the static analysis of Rice [1968] gives the following estimate for the characteristic cohesive
length scale L..p,:

E Em Glc
81— VrQn (Rcoh)Q’

ave

(50)

chm =

where (. is the mode I critical energy release rate, and R" denotes the average value of

Reoh. Using (45) for mode I crack opening, R°" can be linked to the cohesive peak stress
Reoh by:

max

1 A
R = [ Riduy =GR (<L (1)
0

where ( depends on the cohesive zone model: for a Barenblatt type cohesive zone model
(constant traction-separation relation) ¢ = 1; for the model proposed in Section 2.3.b,
¢ =(9—4Ind)/6 ~ 0.57; for the cohesive model of Tvergaard [1990], ¢ = 27/48 ~ 0.56; and
for the extrinsic cohesive model of Camacho and Ortiz [1996], ¢ = 1/2. Combining (49),
(50) and (51), one obtains:

with r ~ 2-3 and ¢ < 1. (52)
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However, these spatial resolution considerations have to be completed by mechanical
considerations on the overall compliance added by intrinsic cohesive models. The initial
slope of intrinsic cohesive models as well as the penalty parameter (for the fracture of
homogeneous materials, for example) can be understood as a mechanical parameter defining
the stiffness of an interface (or interphase between two phases, for example). In the case
of homogeneous or functionally graded materials, this initial slope, denoted here C, must
satisfy the following condition: the wave speed in the material must not be affected by the
cohesive zone model or, equivalently, such that the overall stiffness of the material must not
be affected by the stiffness of the cohesive zone model. The numerical study of Espinosa
and Zavattieri [2003] shows that these conditions are satisfied when

E.,
Lmesh

Cy>F with 7 ~ 10. (53)

To fix ideas on the compatibility between the conditions (52) and (53), let us consider a
perfect elastic brittle cohesive zone model, for which ¢ = 1/2 and (R%")2 = 2CyG/.. The
conditions (52) and (53) then rewrite:

fg CNLmesh < EE 1 .
E,, 7“41—an

(54)

It is readily seen that these lower and upper empirical bounds on Cy Lyesn/ Em do not lead
to a feasible choice for C'y: the lower bound is about 10 and the upper bound is about 0.3.
In other words, it is not possible to accurately resolve the cohesive zone without affecting the
overall stiffness of the solid. Analyzing another type of ratio dedicated to extrinsic cohesive
models, Falk et al. [2001] obtain the same conclusion by considering the cohesive law of
Camacho and Ortiz [1996].

Two comments may be made on this paradox:

a) Firstly, the above considerations for the upper bound on Cy Lyesh/Er, hold if L;y, is
identified to Lcsp- The length L, is almost never considered by authors developing
cohesive zone modeling. In practice, if one uses linear volumetric finite elements, and
if the nodes dedicated to the integration of the surface constitutive relations have
the same position to those of the volumetric finite elements, one has L;,; = Lesh,
and the two quantities can be identified one to each other. A contrario, if one uses
higher order volumetric finite elements, or if one uses more nodes for the integration
of the surface constitutive relations than for the bulk constitutive relations, one has
Lint = (1/p) Linesn, with p > 1. In this last case, the right member of (54) is multiplied
by p > 1. This remark, associated to the fact that the estimate (50) is obtained by
a static analysis, indicates that the upper bound on Cy Lyesn/Fm can be relaxed for
dynamic cracks by incorporating numerous cohesive nodes along the mesh-cell edges.

b) Secondly, the value 7 ~ 10 of the lower bound was obtained numerically by Espinosa
and Zavattieri [2003] on a given situation with a particular type of numerical treatment
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and finite elements. This value has to be confirmed in the general case. This problem
is studied in the next paragraph.

3.2.b A criterion for ’invisible’ cohesive zones

The cohesive/volumetric finite element method tends to add some compliance in the struc-
ture, even in the elastic regime of the cohesive zone (i.e. before the beginning of the surface
damage). Quantifying and limiting this spurious compliance is an important feature for the
practical use of the cohesive/volumetric finite element approach.

In order to answer to this question, we investigate a purely elastic model without dam-
age: we determine, with the help of micromechanical arguments, the effect of this added
compliance on the overall elastic moduli. The case of a mesh with homogeneous elastic
properties is considered. The studied microstructure consists in penny shaped elastic in-
clusions randomly distributed in space and in orientation embedded into an homogeneous
elastic matrix. The fourth-order stiffness tensor of the matrix, respectively the inclusions,
is denoted by C,,, respectively by C;. Since the considered matrix is here a classical elastic
medium, C,, is written as:

Con = 3kpd + 2umK, (55)

where k,,, and pu,, are respectively the bulk modulus and the shear modulus of the matrix.

1
The tensors J and K define the standard base of the fourth-order isotropic tensor: J = §i®i,

1
K = I — J, with i the identity of the second-order tensors and ]Ifjl = 5((5ik5jl + 8i16,1) the

identity of the fourth-order tensors.

The elastic tensor of the inclusions C; is here defined thanks to a small length parameter,
e. This parameter stands for the thickness of an equivalent domain represented by a cohesive
zone model (without thickness), and should then vanish. We claim that C; is given by the
following relation:

C; =eC, with C=CyE; + CrK,, (56)

where the tensors E; and K; are respectively the uniaxial strain along the normal n to the
interface and the longitudinal shear strain:

E, = n®n®n®n (57)
Ky = 2(js®js+jt®jt) where j, =n ®; a. (58)

The vectors s and ¢ define an orthonormal basis of the plane tangent to the cohesive zone,
and n ®; a = (n®a+ a®n)/2. The relation (56) can be proved using the equations (121)
and (4) of the ECZM in the elastic case, i.e.for 3 = 1. In this particular case, the stress
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tensor across a cohesive zone of normal n reads:

o = Rcoh ®sn
= ((CNTZ@’G—FOTM) [u]) Rs N
Jur]
(CNUNTL + CTUT) Rs M
= Cyunn®sn+ Crur Qsn
= CnunE;: (n®sn)+ CrK; : (ur ®sn)
= (CnNE; + C7Kp) @ (unn ®sn + ur @4 n)
(CNE; + OrK)) : ([u] ®5 n). (59)

As underlined by Michel and Suquet [1994], the strain across a small layer of thickness e
can be approached by:

(60)

Combining equations (60) and (59) yields the property (56).
The overall elastic tensor C*™ of the microstructure studied in this paragraph can be
sized with the help of Hashin and Shtrikman [1963]-like estimates:

—1

Cm () = [F[C(C) +C] T+ -N[C () +Cal T —CT(€) (6Y)

where the real value f € [0,1] is the volumic fraction of inclusions and the tensor function
C* ((CO) is by:

C (%) =0 [S(C°) — 1] . (62)

The tensor S (C°) is the Eshelby tensor related to an inclusion embedded in an infinite
medium of elastic tensor C°. The volumic fraction f may be defined by the product eZ
(where Z is a density parameter). For the present case of penny shaped inclusions, e tends
to zero and the Eshelby tensor has the following simple form [Mura, 1982]:

S(C%) =E +K,. (63)

Various bounds and estimates for C*™ can be derived from (61) according to the choice of
the reference medium C°. When e vanishes, (i.e. C; = eC — 0,and f = eZ — 0), the Hashin
and Shtrickman upper bound (C° = C,,), the Mori and Tanaka estimate (C° = C,,), and
the self consistent estimate (C° = C*™) are equal and give the trivial result: C"™ = C,,.
However, the Hashin and Shtrickman lower bound leads to:

- —1
CH$~™ = Chm (C;) = (ZS :C? +<C,—n1) . (64)
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Using (63) and (56), one finds

1 1
—E + —K,. 65
Cn ' er ! (65)
Since we have interest in inclusions randomly distributed in space and in orientation, the
overall elastic tensor C*™ has to be isotropic, and from this point of view, the quantity
S : C~! has to be averaged over all possible orientations. This particular average reads
[Gatt et al., 2005]:

S:C' =

<S : C*1>O — P (S : @*1) (66)

where Pjx(A) denotes the projection of any fourth order tensor A on the base {J,K} and
(A) is th average over all the possible orientations of any tensor A. This last quantity is
equal to

~ 1 2 1 1
S:C") =—=J+z(z7++ K 67
< >Q 3CNJ+5 (3CN+CT> (67)
Writing C*™ in the form
(CHS_ — 3kHS_J+2MHS_K (68)

where k"™ and pM®” are respectively the overall bulk and shear moduli, and using equation
(64), one obtains after some algebra:

KRS T . Cn
phs Yy . 15CnCr

= 2 withy= . 70
Lo, 1—vy Wiy 4y (Cr +3CN)Z (70)

Combining k"¢~ and pM**~ gives the following lower bound for the overall Young modulus:

EHS* B f B 5 CN
E., 1+¢°

(71)

where E,, being the Young modulus of the matrix.
At this stage, the comparison of various cases of cohesive zone models is an interesting
issue. Firstly, for ‘no shear’ CZM (i.e. CZM involving no tangential reaction), the condition

Cr =0 gives £ =0, (72)

and the initial normal elasticity of the cohesive zone have to be infinite in order to obtain
a non vanishing overall elasticity for the structure. Second, for ’no sliding’ CZM (i.e. CZM
involving no tangential sliding), the condition

5Cn

e (73)

Cr — oo gives & =
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Third, for the frequent case of equal normal and tangential elasticity, the condition

. 15 Cn

Cn = Crp gives £ = TE.Z (74)

In what follows, the relation Cy = C7p is assumed. The question of estimating the

density parameter Z depends on the type of mesh which is used. In order to illustrate the

accuracy of the lower bound (71) and the relation (74), we consider the 2D case of a square

meshed with regular squares divided in four equal isosceles triangles. We denote by Liesn

the length of the larger side of each triangles, by p the number of meshes by side of the

square, by [ the total length of cohesive zone (total length of boundaries between meshes),

and by N the number of meshes. For non vanishing thickness e of cohesive zone, the volumic
fraction f reads:

le

= @ N

(75)

and when e — 0, the relation f = Ze gives the limit case:

41
7=
LmeshN

The total length of cohesive zone [ is related to parameters L5, and p:
= 2\/§Lmeshp2 + 2p(p - 1)Lmesh- (77)

For large meshes (i.e. when p — o0), one finds:

P 2(1+\/§). (78)
Lmesh

Putting this last equation in (71), the following lower bound holds for this type of meshes:

5/(1+ \/5) CNLmesh.

iCx\ L.
914 2N
<+30T>

The accuracy of this lower bound is illustrated on Figure 10 where the overall Young
modulus of an elastic structure including elastic cohesive zone models at each finite elements
boundary is plotted for various parameters {. The range of parameter ¢ is about [0, 40] with
Cn/Cr € [1/3,10/3] and Cn Lyesn/Em € [T x 1073, 51].

For the particular case Cy = Cr, the following criterion can be written:

EH57
Em

& _
= Ti¢ where { = (79)

CN mesh E"s™

Em Em

This criterion being related to the lower bound of the overall stiffness of the solid, it is
noteworthy that, in practice, the numerical-based criterion of Espinosa and Zavattieri [2003]

should be relevant for any type of situations, even those very far from what they studied.

>0.9. (80)
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EHS_/Em

0 10 20 30 40

§

Figure 10: Overall Young modulus of an elastic structure including elastic cohesive zone
models at each finite elements boundary for various parameters ¢ (see equation (79)): nu-
merical results (points) and lower bound (79).
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3.3 Mesh and time-step dependencies
3.3.a Illustration of the mesh independence of the overall fracture properties

The question of the spatial convergence of the cohesive/volumetric finite element method is
often debated in the literature (see, for example, the recent review of de Borst et al. [2006]).
The work of Tijssens et al. [2000] has shown for the first time that this approach suffers
from a certain mesh bias, and that the initial mesh design can drastically affect the final
crack path. From this point of view, the so-called cohesive segments method was devel-
oped by exploiting the partition-of-unity property in order to avoid this problem Remmers
et al. [2003]. But, from the point of view of the spatial convergence the conclusion is quite
different. First, the work of Papoulia et al. [2006] proves the spatial convergence of crack
nucleation within the cohesive/volumetric finite element framework using extrinsic cohesive
models and a so-called pinwheel-based mesh having the isoparametric property (this prop-
erty states that it is possible to found a broken line based on mesh-cell edges that tends to
any given curve on the computational domain when the grid size tends to zero). Second, the
study proposed here illustrates the fact that the cohesive/volumetric finite element method
using intrinsic models can lead to mesh independent overall fracture properties since the
finite element discretization error is acceptable and the initial cohesive stiffness is calibrated
using the proposed criterion (80).

In this illustration, the representative volume element considered is a square with length
L = 10pum under plane strain hypothesis (section S = 10~5m?). The material is assumed
to be Neo-Hookean brittle: Young modulus E,, = 135G Pa, Poisson coefficient v,,, = 0.32,
critical energy release rate Gr. = 0.5.J/m?, and density equal to 7800kg/m?. The used cohe-
sive law is the one given on section 2.3.b with C'y = Cr, a low friction coefficient p = 0.05,
and no soft coupling between cohesion and friction x = 1. Velocity boundary conditions are
imposed along vertical faces (V = 2m/s), and an initial crack is inserted at the center of
the structure and perpendicular to the loading direction.

The mesh convergence is studied through the macroscopic fracture energy £, composed
by the dissipated energies during the fracture process, as a function of the mesh size L,¢sp-
The finite element discretization is based on linear displacement triangular elements that are
arranged in a "crossed-triangle" quadrilateral pattern and four mesh sizes considered are :
0.2um (10000 meshes), 0.25um (6400 meshes), 0.33um (3600 meshes) and 0.5um (1600
meshes). The initial cohesive stiffness Cn is adapted for each mesh in order to verify the
criterion (80): CnLmesn/Em = 21.

The Figure 11 shows the rupture features of the mesh sizes considered. Although the
cracks paths are noticeably different, the macroscopic fracture energy £ is constant for each
mesh size (see Table 1). This result demonstrates the mesh size independence of the overall
fracture properties of the two following conditions are satisfied:
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a) the mesh size is enough small such that the finite element discretization error is ac-
ceptable and,

b) the initial cohesive stiffness is well calibrated using the criterion (80).

(c) 6400 meshes (d) 10000 meshes

Figure 11: Rupture features for various meshes using an adapted initial cohesive stiffness
with respect to the criterion (80): Cn Lmesn/Em = 21.
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Lomesn/L 5.0 x 102 33 x 102 2.5 x 102 2.0 x 102
£/(G1eS) 21.62 21.80 22.20 22.20

Table 1: Normalized macroscopic fracture energy in function of the non dimensional
mesh size for an adapted initial cohesive stiffness using the obtained criterion (80):
CNLmesh/Em 2 21.

4 Non Smooth Dynamics formulation

This section aims at introducing a particular formulation of the Dynamics, the so—called
Nonsmooth Dynamics. Two kinds of nonsmoothness are considered: the eventual non-—
differentiability of the dynamics with respect to time, more precisely of the state variables
and the multi—valued, and then nonsmooth, description of the constitutive laws. As we have
already seen in the formulation of the ECZM (1)—(3), Nonsmooth Analysis, Convex Analysis
and Set-valued Analysis [Hiriart-Urruty and Lemaréchal, 1993] play an important role in
our setting. The term “nonsmooth” refers firstly to all the mathematical and mechanical
background allowing us to deal with some extended kinds of laws. For the nonsmoothness in
time, the occurrence of velocity jumps is a well known feature of the second order dynamics
with unilateral constraints on the position even with continuum media. This fact leads
us to take some precautions when the dynamics is formulated. Especially, the notion of
second order derivative of the position has no usual sense when the dynamics is nonsmooth.
Measure Theory on the real line will help us to adequately formulate our problem.

4.1 The smooth equations of motion

In this section, the smooth equations of motion of a collection of N continuum media are
introduced in a quite usual setting. The continuum medium is identified at time ¢ € [0, T
by its volume in IR?. The integer d = 1,2, 3 denotes the space dimension, of interior

Q'(t)cR%ie{l,...,N}

and boundary 9Q(t). If Q' is a deformable continuum medium, the equations of motion
are introduced through the principle of virtual powers in a finite strain Lagrangian setting
permitting a space-discretization based on a conventional finite element method. If O is
assumed to be a rigid body, the equation of motion will be described by a finite set of
coordinates. In both cases, possibly after a space-discretization, the equations of motion
will be formulated and treated in a single finite-dimensional framework.

A material particle is described by its position, X in a reference frame at ¢ = 0 and by
its current position x = ¢(X,t) at time ¢. For a Lagrangian description, we also assume we
know at least formally the function X = ¢(x,t). The displacement is defined by u(x,t) =
x—X = x—¢(z,t) and the velocity and the acceleration are denoted by u and ii. Most of the
Lagrangian variables expressed in terms of X are denoted by capitals letters, for instance,
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U(X,t) for the displacement, and denoted by lower case for the associated Eulerian variables,
in this case u(z,t). This convention can be summarized by u(z,t) = u(p(X,t),t) = U(X, ).

Principle of virtual powers in continuum mechanics. Starting from the equation of
motion in Eulerian coordinates,

divo(z,t) + p(x, t)b(z, t) = p(z, t)i(x,t),Va € Qi(t), (81)

where o(z, t) is the Cauchy stress tensor and b(x, t) is the density of body forces, the principle
of virtual power states that

/ (i, £) — b, 1))z, 1) dm(z, 1) = / divo(z, )o(z, ) do(z, £),  (82)
Qi(t) Qi(t)

for all virtual velocities denoted by ¢(x,¢). The measure dw(x,t) denotes the Lebesgue
measure in IR? at z and the measure dm(z,t) = p(z,t) dw(z,t) is the mass measure. With
the help of the Green formulas, the principle of virtual power is usually reformulated as

/ (e, t) — bl )i, £) dm(x, £) = — / ol t): Ve, t) dole, 1)
0 (t) i (t) (83)

+ /B%(t) t(z, t)o(x, t) ds(z,t) + /FM r(x, )0 (x, t) ds(z, t)

where A: B = A;; BY is the double contracted tensor product, and t(z,t) = o(z,t).n(z,t)
is the applied forces on the boundary of outward normal n and r(x,t) the reaction forces
due to the cohesive interface. The measure ds(z,t) is the Lebesgue measure at z € 9.
The symmetry of the Cauchy stress tensor in absence of density of momentum allows one
to introduce the symmetric deformation rate tensor,

D(z,t) = %(VTU(x,t) + Vo(z,t)) (84)

leading to the standard expression of the virtual power of the internal forces of cohesion
Pint = —/ oz, t): Vi(z,t) dw(z,t) = —/ o(z,t): D(x,t) dw(z,t) (85)
Qi(t) Qi(t)

In order to formulate the principle of virtual power in a total Lagrangian framework, the
second Piola—Kirchhoff tensor,

S(X,t)=F 'det(F)oTF~T

0 dp(X,t
is introduced, where F' = 8—;( = % is the deformation gradient. The virtual power
of the internal forces is then rewritten, as

Pint = — /  o(@,t): Vi, t) dw(z,t) = - / S(X,1): L(X, 1) dQ(X,0) (86)
Qi(t) Qi(0)
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where L = F. Finally, the principle of virtual power in a total finite strain Lagrangian
framework in terms of the convected Lagrangian variable X, is

/ (U(X,t) — B(X,t))V(X,t)dM(X,0) :-/ S(X,t): L(X,t)dQ(X,0)
Qi (0) Qi(0)

+/ T(X, )V (X,t)dS(X,t) + R(X, )V (X,t)dS(X,t)
0 (0) Ti(0)
(87)

where the applied forces laws on the boundary satisfies T'(X,t) = S(X,t).FT(X,t).N(X,t)
and R(X,t) = S(X,t).FT(X,t).N(X,t). It is noteworthy that the interactions between
bodies that are taken into account in this model are only given by the forces through the
cohesive interface with unilateral contact and friction.

For the constitutive material laws, a large panel of models can be taken into account in
this framework and in the numerical applications. The formulation of the constitutive laws
is based on the standard thermodynamics of irreversible processes [Germain et al., 1983]
or based on a variational formulation of incremental stress-strain relation deriving from a
pseudo elastic potential [Ortiz and Stainier, 1999]. When the behavior is not explicitly men-
tioned in the further numerical experiments, the bulk response of the material is supposed
to be linear elastic, that is

S(X,t)=K(X,T): E(X,1), (88)

where F is the Green-Lagrange strain tensor,
1

the tensor I is the identity tensor and K (X, T) is the fourth order tensor of elastic properties.

The finite element discretization is conventional and is based on this principle of virtual
power in this total Lagrangian framework. Choosing some isoparametric element leads to
the following approximation

UX,t) =Y NMX, UML), a(X,t)=> NMX,)Uu(t), UX,t)=> N'X,t)Uu(1),
h h h

(90)
where N are the shape functions and U}, the finite set of displacement at nodes. Substituting
this approximation into the principle of virtual power and simplifying with respect to the
virtual field yields a space-discretized equation of motion of the form

M(Un)Un + F(t,Un,Un) = R, (91)

where M (Uy,) is the consistent or lumped mass matrix, the vector F' (¢, Uy, Uh) collects the
internal and external discretized forces and R are the discretized forces due to the cohesive
zone model.
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Principle of virtual powers in rigid body mechanics. In rigid body mechanics, it is
assumed that the power of the cohesion internal forces vanishes for a rigid motion given by
the following set of virtual velocity field,

V = {iz,t) = vo(t) + &t) x (z — x0), Yo € Q' (H)}, (92)

where O is a geometrical point fixed with respect to the body, o is the position of this
point v (t) is its velocity, and w(t) the angular velocity of the body at O. This assumption
yields

/ (i t) — bla, )0, 1) dm(z, 1) = / Ha )i, £) ds(z,t),  Vi(z,t) €V (93)
Qi (1)

(1)

The equation of motion can be derived choosing a particular virtual velocity as:

D i) dm(z,t) = / bz, ) dm(z, ) + / Ha,t) ds(, 1),
dt Joi() Qi(t) 09 (1)
4 / (@ — 20) X i, £) dm(z, t) — / (& — 20) x g(x, 1) dm(z, ) (94)
dt Qi(t) Qi(t)
+ (x —z0) x t(z,t)ds(z,1).
29 (1)

Various descriptions of the equations of motion of a rigid body can be deduced from
the principle of virtual power choosing particular kinematics. Without going into further
details, the Newton-Euler formulation can be chosen to write the kinematics with respect
to the center of mass G; of the body € in Eulerian coordinates:

w(x,t) = vg, (t) + wi(t) X (x — zg,), (95)
iz, t) =g, (t) + wi(t) x (z — zg,) + wi(t) x (wi(t) x (z = zg,))-

Substituting (95) into the equations of motion (94) yields the well-known Newton-Euler

equations,
M 0]d/[ v 0 [ fent(d)
[ 0 I } di [ ) ]* [ wilt) x Twi(t) ] = [ Meat () } (96)
where
M = /Qi(t) dm(z,t) = /Qi(o) dM(X,0),
I = / (z—2a,) (& —xg,)dm(z,t),= [ (X - X¢a,)" (X - Xg,)dM(X,0),
Qi (t) Qi(0)
fmtlt) = /Q o Ym0+ /6 RCOLIC!
Megt(t) = / (x — zg,) x b(x,t)dm(z,t) + - (z—zg,) x t(z,t) ds(z, ).
Qi(t) o0 (t)
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Usually, a second order form of the dynamics is obtained with the help of the following
parametrization of the vector w;,

wi(t) = Dy(W, 1), (1), (98)
where D(¥,t) is supposed to be a diffecomorphism. For a collection of N rigid bodies, a
usual way is to introduce a set a generalized coordinates z such that
T
2= |[z6: Yilier..ny (99)

assuming that the positions and the orientations of the bodies are uniquely determined by
z. With this variable, after some algebraic manipulations, the equations of motion can be
written as:

M)+ F(t,z,2)=r (100)

It is noteworthy that this formulation allows us to add some internal forces between bodies
expressed in terms of the generalized coordinates z.

Clearly, the equations of motion can also be obtained straightforwardly thanks to the
Lagrangian formalism postulating the existence of the Lagrangian of the system,

L(z,2)=T(z,%2) = V(2),
composed of the kinetic energy,
1
T(z,2) = 5:;:TM(z)z'

and the potential energy of the system, V' (z). The Lagrange’s equations can be written as
d (OL(z, %) OL(z, %)
dt 0%; 0z;

where the vector Q(z,t),€ IR" denotes the set of generalized forces. With some standard
algebraic manipulations, the Lagrange equations (101) can be put in a more usual form:

Z’j FN(2,2) = Q(2,t) — V.V (2) (102)

= Qi(zt), ie{l...n}, (101)

M(z)

T

Z OMy 8M7l - OMy ,i=1...n| collects the nonlin-
0z 0z, 0z;
ear inertial terms i.e., the gyroscoplc accelerations.

If we allow one to introduce non linear interactions between bodies of the system and
external applied forces which do not derived from a potential, we will use the following more
general form for the equation of motion:

M(2):+ F(t,2,2) =0 (103)

where the vector N(z, 2)

where F': IR" x IR" x IR — IR" collects the internal non linear interactions between bodies
which are not necessarily derived from a potential and the external applied loads.
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Summary of the equations of motion. In the sequel, the equations of motion of space-
discretized continuum media and rigid bodies will be treated in the same setting. In order to
summarize the equations (91), (100) and (103), we introduce the finite of variables ¢ which
can represent the discretized displacement Uj or any generalized coordinates of the rigid
motion z. Hence, the equations of motion will be written as

M(q)g+ F(t,q,q) =r (104)

where ¢ collects the variables U, and z.

4.2 Global to local mappings

In order to relate the global or generalized variables ¢,¢ and r to the local variables at
interface [u], U and R, several global to local mappings are introduced. We assume first that
the local ECZM is written on a finite number v of geometrical points labeled by a. The
assumption implies that a space discretization of the cohesive zone has been performed. If
the bodies in contact are locally convex, the common point at interface can be uniquely
determined and the space-discretization is straightforward. In other case, some choices have
to be made to locate the points on the interface. Even in the case of rigid bodies, the
procedure is not trivial and can influence the quality of numerical results.

We denote by [u] € R**? and [4] € R”*? the vectors collecting respectively the dis-
placement and the velocity at each interface point,

) = [ (0% oy | - b= [ (80 8 lacqn | (105)

and by R € IR"*? the vectors collecting the reaction R® at each interface point,

R=[ [R%: R lacqr. r. (106)

The local to global mappings can be written as follows

W] = G(a), (107)
[a] = H(q)q, [W]* = H*(q)q, (108)
ro= H'(@QR=>_ H""(gR, (109)

where H appears as the Jacobian of the mapping G, i.e., H = VqTG(q). It is noteworthy
that the relations in terms of velocities (108) and reactions (109) appears to be linear for a
fixed gq.

4.3 Measure differential formulation

Motivations With the presence of the unilateral constraints and dry friction or with any
nonsmooth interface law, the evolution of the systems is usually no longer smooth [Brogliato,
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1999]. Indeed, some nonsmoothnesses such as jumps have to be expected in the velocity
and the acceleration. To take into account this particular feature of the Dynamics, some
care has to be taken regarding the time derivative of kinematics variables and the definition
of forces. We will see in the sequel that a rigorous mathematical framework is provided by
Measure Theory.

The material of this section is inspired by the pioneering work of Jean Jacques Moreau
[Moreau, 1988, 1999] on Nonsmooth Mechanics for finite-dimensional systems with unilateral
constraints and Coulomb’s friction. A partial presentation of the following formulation of
the ECZM in a nonsmooth dynamics framework can be found in [Monerie and Acary, 2001].

The equations of motion in terms of Measure Differential Equations The velocity
v = ¢ may encounter jumps and must be considered as a function of bounded variations
(B.V.) in time. Within this assumption, the equation of motion is rewritten in terms of
Right continuous B.V. (R.C.B.V.) function, denoted as v™ = ¢+ 1.

The generalized coordinates, assumed to be absolutely continuous, are deduced from the
velocity by the standard integration of a function of bounded variations:

o0 =t + [ Lot dt (110)

to

where dt is the Lebesgue measure. If the velocity is a function of bounded variations,
the acceleration is no longer defined everywhere as the derivative in the classical sense of
the velocity. The notion of differential measure, or a special Stieltjes measure provides us
with the right substitute to this notion as a derivative of the velocity in the sense of the
distributions. A differential measure dv is then associated with the B.V. velocity, v as

dv(]a,b]) = /] A= @ (111)

In the same way, the generalized force, r due to the unilateral constraints is also to be
considered as a real-measure, denoted dp.
The equation of motion (104) is formulated in terms of a measure differential equation:

{M(q)dv + Fine(t, g, vT)dt = Flpy(t)dt + dp 112)

U+:q+

dv
If the motion is smooth with respect to time, we retrieve that — = ¢ = § and dp = rdt.

Otherwise, some jumps are expected and therefore atomic measures will be found in dv and
dp.

IFunctions of bounded variations always possess right and left limits.
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Global to local mappings for measures The global to local mapping are written
straightforwardly in terms of measures and right limits of B.V. function as,

[@]"(t) = H(q)o*(8)  [d]*7(t) = H*(q)o™ (¢) (113)
dp = H*(q)dP = 3=, H*"(q)dP*

Non Smooth cohesive zone model as measures inclusion We omit in this section
the index « for the sake of readability. Let us consider first the unilateral contact law,

—Ry € 0TI+ (un). (114)
This inclusion (114) is “replaced” by the following inclusion
—dPN € N1, (un) (U (1)) (115)

where N¢ defines the normal cone to a closed convex set C, and T¢ the tangent cone
[Hiriart-Urruty and Lemaréchal, 1993]. This formulation is one of the keystone of the method
referred as the Moreau’s sweeping process which is a mathematical setting which combines
a dynamics described in terms of measure as in (112) together with a description of the
unilateral constraint including an impact law (115). The inclusion (115) will be called the
inclusion in terms of velocity. Two features of this inclusion have to be mentioned: a) the
inclusion concerns measures, b) the inclusion in terms of velocity u} rather than of the
coordinates uy. Therefore, it is necessary to define what is the inclusion of a measure into
a cone. For a mathematical definition of what is a inclusion of a measure into a cone K, we
consider a nonnegative (Radon) measure dv and we assume that the measure dr possesses
a density, r'(t) = % : [0,T] — IR” with respect to dv. The inclusion dr € K has to be
understood as

r'(t) € K, dv almost everywhere. (116)

For more details, we refer to [Acary et al., 2006, Kunze and Monteiro Marqués, 2000, Mon-
teiro Marques, 1993, Stewart, 2001].

Clearly, the equivalence between the inclusion in terms of velocity and the one in terms
of coordinates is not ensured in the general case. A viability lemma due to Moreau [1999]
ensures that the inclusion in terms of velocity (115) together with admissible initial condi-
tions on the position implies that the constraints on the coordinates are always satisfied.
In fact, we always have N, (un)(@8) C N+ (un). The reverse is clearly not true. A key
assumption has to be added which is related to the notion of impact laws. Indeed, if the
constraint is active, i.e. dPy > 0, then the post impact velocity uyx " is equal to zero. For
instance if an impact occurs, the post impact velocity vanishes. The model is a inelastic
(plastic) impact rule. If the data are sufficiently smooth, we can hope that the equivalence is
true if an inelastic impact rule is assumed. As it is done in [Mabrouk, 1998, Moreau, 1988],
the impact rule can be enhanced with a normal coefficient of restitution e as follows

—dPN € N, (uy) (i} + etiy). (117)
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The dry friction case is treated as well in terms of measure, i.e.,
—dPr € O(uldPy| || a7 [1)- (118)

Finally, for the Enhanced Cohesive Zone Model in its intrinsic form (1)- (3), the measure
differential inclusion is derived as

—dPy + dP§" € Nz, (uy) (i + etiy) (119)
—dPr + AP € B n(B)|dPy + PSR | i ) (120)
choh _ RCOhdt, Rcoh _ K(ﬂ) . [u] 9(6, ﬁ’ uN, UT) =0, (121)

where the convention dr € K < v’ € K is extended to dr € K(dr) < ' € K(r').

Comments and interpretation If the evolution is smooth, the measure dP can be iden-
tified to R(t)dt. Due to the definition of the inclusion into a cone, we retrieve the original
ECZM except for the formulation of the unilateral constraint which is now in velocity. For-
tunately, in smooth case, the inclusion in terms if u is equivalent to the inclusion in @} (¢).
Smooth evolutions can be expected when there are no external impulses due to external
impact and there are no negative relative pre-velocity. In this case, the smooth model is
valid and equivalent to the nonsmooth one.

If the evolution is no longer smooth due to external impact, or the presence of unilateral
contact and friction zone with negative relative velocity, a decomposition can be artificially
introduced to understand what is the behavior of the model in terms of measures. Let us
assume that the impulse measure dP can be decomposed as

dP = Rdt + P§,, (122)

where J;, is the Dirac distribution at time t; and P is the amplitude of the impulse 2. The
model can be decomposed as

—Ry +RY" € Np .y iy + €tiy)
—Rr + R" € O(uk(B)Ry + R || i ||) dt- almost everywhere (123)
RCOh:K(ﬁ)[u] 9(67 67 UN, UT)ZO

and - o
—Py € NT]R+(UN)(UN +euN)
—Pre O(ur(B)IPw] | @ |I) at t=t; (124)
peo =0

To sum up, the forces due to the cohesive interaction in the media are assumed to have
only a density with the respect to the Lebesgue Measure and therefore do not enter into the
model when a jump occurs. This is clearly a modeling choice which can be discussed. We
will see in the next section what the consequences of this model in terms of measures on the
time-discretization are.

2such a decomposition assumes especially that the diffuse singular measure vanishes.
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5 Contact Dynamics: implicit Moreau’s time stepping
scheme

5.1 Time discretization of the nonsmooth dynamics

In this section, a time discretization method of the Lagrange dynamical equation (112)
consistent with the nonsmooth character of the solution, is presented. This integration is
inspired by the work of Moreau [1988, 1999] and Jean [1999] with some adaptations and
refinements for the non linear bulk behavior and the ECZM model.

Measure differential equations Integrating both sides of this equation over a time step
Jtk,tr+1] of length h,

trt1
/ Mdv+/ F(t,q,vT)dt :/ dp,
Itk trta] tg Tthotrg]

oyt
q(te+1) = q(tr) +/ vtdt.

ty

(125)

where M is assumed to be constant for simplicity’s sake. By definition of the differential

measure dv, we have / Mdv=M dv =M (vF(tg41) — v7(tx)). Note that
Ttk try1] Ttk thy1]
the right velocities are involved in this formulation.
The impulse / dp of the reaction on the time interval |ty t;+1] emerges as a natural
Itk tr1]

unknown. The equation of the non smooth motion can be written under an integral form
as:

41
M (i) o) = [ Fleaota= [ ap
st ltw bl (126)
dlter) =att)+ [ ot
tr

Since discontinuities of the derivative v are to be expected if some shocks are occurring, i.e.
dp may have some Dirac atoms within the interval |tj,t;+1], higher order approximations
integration schemes for dp are irrelevent. It may be shown on some simple examples that,

on the contrary, such high order schemes may generate spurious numerical oscillations.
The following notation is used: qx =~ q(tx) and qx+1 = q(tx+1), vi ~ v7(t) and vy ~

v* (tg41), and
P41 %/ dp.
Ttk try1]

The a priori smooth term are evaluated with a f-method, chosen in this context for its
energy conservation ability,

th+1 _
/ F(t,q,v)dt =~ hF(tk, ks Vs tht1, Qot1s Vkt1, tht6, Qht6, Vk+6) (127)

ty
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where the mid-values t;14, qr+0, Vi+o are defined by

tiro = Otprr + (1 — Oty
Qetro = O0qer1 +(1—0)qx , 0<[0,1] (128)
Vkyo = Ovpp1 + (1 — O)ug

The choice of the approximated function F' strongly depends on the nature of the internal
forces that are modeled. For the linear elastic behavior of homogeneous continuum media,
this approximation can be made by :

1
F(t, @y Ve, ity Qi1 Vit 1, Bt 0, Qo Vo) = 5500 [B(qk) + E(qrr)] - F(gray2) (129)

which leads to a energy conserving algorithm as in [Simo and Tarnow, 1992]. For nonlinear
elastic other smooth non linear behaviors, we refer to the work of Gonzalez [2000], Laursen
and Meng [2001] for the choice of the discretization and the value of 6.

The displacement, assumed to be absolutely continuous is approximated by:

Gk+1 = qr + hviyo .

The following time discretized equation of motion is obtained:

(130)

M (V41 — Ok) + RE(tk, Qhy Uk tht 1, Qs Ukt 15 Ehtr6s Qht 85 Vkt6) = Dkt
Qk+1 = qr + hvg4e

which is assumed to be linearized and iteratively solved at each time by for instance a
Newton procedure or one of its variants. The linearized system will be denoted as

{(M + h0C; + 0°h* Ky) (k1 — k) + Stk Gy Uk) = Pry1

(131)
Qk+1 = Qk + hUi4o

where the matrices C; and K; stand for the tangent viscous and stiffness matrices.

For 6 = 0, the scheme is explicit in the evaluation of the internal forces. When loading or
fracture are highly dynamical, it may be interesting to use such a scheme with small time-
steps avoiding the evaluation of the tangent operators. We retrieve in the case a scheme
which is very similar to the scheme of Carpenter et al. [1992]. For 8 €]0, 1], we obtain a
semi-implicit scheme with good stability property for 6 > 1/2. With § = 1/2, a second order
in accuracy can be retrieved in smooth evolution. It is noteworthy that whatever how the
parameter 6 is chosen, the scheme is fully implicit for the evaluation of the reaction impulses
dp.

Global to local mappings The global to local mappings are discretized in a fully implicit
way for the terms involving velocities and impulses :

(W1 = H(Grt1)dr+1, (132)
prar = H (G1)Prir =Y H  (Grir)Piy- (133)
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For the displacement, two parameters 71, y2 are introduced to forecast the configuration at
contact as

Ge+1 = g + h(71vk + Y20k41) (134)

For most applications in which the normal to the interface do not change too quickly or if
the curvatures of the interface are small, the evaluation of the contact configuration may be
explicit, that is y2 = 0 and ~; is chosen in [0, 1].

5.2 Time discretization of the ECZM
Finally, the ECZM model in discretized in a implicit way,

Pcoh

—Pn g1+ N1 € Ny i) (W sy T €[ n 1)

—Prs1 4+ PP r i € O(p K (Brr1) PN kg1 + P N g || [@] 7 gora 1)

Peohy iy = hREM R = K (Bis1) - [k 9Bty Bty B [N psts [WlTger1) =0
(135)
where the function g is the numerical counterpart of the function g evaluated at the discrete
approximations of the variables, [, 3, un,ur. The displacement jump w1 is evaluated
in a consistent manner with respect to (134),

UNgs1 = Ung + h(1 [it]Mk + 72[11]N,k+1)- (136)

An obvious choice for 71 and 7- is to be coherent with the forecast of the generalized displace-
ment as in (134). In the same way, the approximation of the displacement jump [u];4+1 can
be derived directly from the global to local mappings and the approximation (131). Nonethe-
less, some other choices can also be suitable for ensuring gap consistency, for instance, or
the conservation of energy at impact in the elastic case. In this case, the displacement jump
[u]k+1 is approximated from the local relative velocities [i]y , and [i]y ,,, With a different
numerical integration rule. For a comprehensive discussion of this point we refer to [Jean,
1999].

A substantial discrepancy has to be noted between the time integration of the impulses
P and the smooth reaction R. For the impulses, the total amplitude of the impulses is
conserved as primary variable. For the smooth reaction forces, the time discretization is
given by a implicit rule.
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Finally, the systems of inclusions (135) is rewritten in terms of conditional complemen-
tarity conditions for computational purposes as

Pcoh

if u}ka > 0, then PN,k+1 — N,k+1 = 0

Pcoh

if unyqq <0, then 0<Pnkt+1 — N1 LWy g +eld]y,, 20

—Prgg1 + P € O(p s (Brr1) PNk + P wopa | | [l gy )

Peoly iy = hREM . R = K (Bis1) - [Wlir  G(Brk+1s Bty B [u)n sty [WlTget1) =0
(137)

5.3 Numerical scheme and algorithm

Local formulation of the problem. The resolution of the discretized and linearized
problem is based on a condensation on local variables of the dynamical equation (131) using
the equations (132)—(133). The reduced equation of the Dynamics can be read as

[u]k-i-l = [u]free + WPy (138)
where the matrix, called the Delassus operator,
W = H(Gg41)(M + h0C; + 0*h*K,) " YH” (Gr41),
models the local behavior of the bodies at the interface, and the vector
Vfree = H(Gry1) (g — (M + hOC, + 0*h*K,) " o (tr, qr, vr))

is the relative free velocity, that is the velocity without the contribution of the ECZM.
At each Newton step the following system has to be solved :

[u]kJrl = [u]free + WPk+1
—PNt1 + PO N gy € Nz i) (W gy + €l 1)
—Prit1 + P g1 € Ok (Brr1) PNkt + P n | | @ g )

Pt = hREM . RN = K(Bry1) - [u]ks G(Brs1s Bty Brs [N ki1, [T pg1) =0
(139)

Local resolution. The procedure which is used to solve the previous problem is based on
an algorithm already extensively used for the tridimensional contact problem. Indeed, we
define the following variable:

—Pnsr1 = —Pyas1 + PN i1, —Pras1 = —Priy1 + P (140)
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the following systems of equations is solved assuming known provisional values for P, 1,851
and [u]k+17
[u]k+1 = [u]free + WPk+1

_lsN,kH € NTlR+ (?fzw-,+1)([u]N,k+1 + e[u]N,k) (141)

—Prir1 € O a(Ber) Pl || [z ppy )

This last system is a standard discretized system for tridimensional unilateral contact and
friction. The numerical algorithm is derived from standard splitting algorithm for Linear and
non linear Complementarity problem which are well suited for large systems of equations.
Each subproblem is solved by a nonsmooth Newton solver. More details can be found in
[Alart and Curnier, 1991, Jean, 1999, Jourdan et al., 1998].

Update of the cohesive variables P°°";,;,3.,1 and local displacement [t]et1e
Three methods are used for the update of the cohesive variables. The first one is based
on a fixed point procedure. The values of P¢"; .1, Bx11, [u]r+1 are updated after the reso-
lution of the pure contact friction problem (141) with an iterative splitting algorithm. The
second one considers [ as internal state variable and is updated in the Newton loop. Finally,
a third procedure uses directly the iterative splitting algorithms and leaves the non linearity
due to the cohesive laws to the contact-friction algorithm.

6 Conclusion

In this paper, the concept of enhanced cohesive zone dedicated to the nonsmooth fracture
dynamics is presented. This concept allows us to extend any extrinsic or intrinsic cohesive
zone model with the frictional and unilateral conditions which are well suited to the dy-
namic fracture of homogeneous, heterogeneous and graded materials. Some theoretical and
practical uses of this concept together with the cohesive-volumetric finite element approach
are investigated. A particular attention is paid to two main limitations of the cohesive
zone models often emphasized in the literature: (i) instabilities or solution jumps related to
the softening behavior of the extrinsic or intrinsic cohesive zone models, and (ii) the mesh
sensitivity of the solution. A wide analysis of the first point in the quasi-static case shows
that the cohesive zone models are equivalent one to each other for stable rectilinear crack
propagation, but not for the crack initiation and the crack branching. In particular, a quan-
titative explanation of the fact that the extrinsic models are more stable the intrinsic models
is given. The interest of an accurate dynamical relaxation, namely the nonsmooth contact
dynamics method, is illustrated on a local graph (condensed problem). For the second point,
the notion of 'mesh sensitivity’ is clarified: although the spatial convergence of the crack
path is not reached for ’crossed-triangle quadrilateral’ meshes [Tijssens et al., 2000], it is
reached for meshes having the ’isoparametric properties’ [Papoulia et al., 2006]; moreover,
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the independence of the overall elastic and fracture properties to the mesh size is obtained
when a new micromechanical-based criterion on a cohesive internal length is satisfied.

In a second part of this paper, a comprehensive formulation of a nonsmooth dynamical
framework is provided. This framework based on measure differential inclusions allows one
to take into account the nonsmooth evolutions. This mathematical background leads to a
sound numerical method for solving the nonsmooth fracture dynamics in a consistent way.
In a forthcoming article, more illustrations will be given on the ability of this method to
simulate real-like applications.
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