Periodic solutions of piecewise affine gene network models: the case of a negative feedback loop

Etienne Farcot 1, * Jean-Luc Gouzé 1
* Auteur correspondant
1 COMORE - Modeling and control of renewable resources
LOV - Laboratoire d'océanographie de Villefranche, CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : In this paper the existence and unicity of a stable periodic orbit is proven, for a class of piecewise affine differential equations in dimension 3 or more, provided their interaction structure is a negative feedback loop. It is also shown that the same systems converge toward a unique stable equilibrium point in dimension 2. This extends a theorem of Snoussi, which showed the existence of these orbits only. The considered class of equations is usually studied as a model of gene regulatory networks. It is not assumed that all decay rates are identical, which is biologically irrelevant, but has been done in the vast majority of previous studies. Our work relies on classical results about fixed points of monotone, concave operators acting on positive variables. Moreover, the used techniques are very likely to apply in more general contexts, opening directions for future work.
Liste complète des métadonnées


https://hal.inria.fr/inria-00112195
Contributeur : Rapport de Recherche Inria <>
Soumis le : mardi 14 novembre 2006 - 11:33:17
Dernière modification le : mercredi 19 septembre 2018 - 01:22:28
Document(s) archivé(s) le : vendredi 24 septembre 2010 - 11:54:53

Fichiers

Identifiants

Collections

Citation

Etienne Farcot, Jean-Luc Gouzé. Periodic solutions of piecewise affine gene network models: the case of a negative feedback loop. [Research Report] RR-6018, INRIA. 2006, pp.22. 〈inria-00112195v5〉

Partager

Métriques

Consultations de la notice

337

Téléchargements de fichiers

126