
HAL Id: inria-00112340
https://inria.hal.science/inria-00112340

Submitted on 9 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rewriting-Based Access Control Policies
Anderson Santana de Oliveira

To cite this version:
Anderson Santana de Oliveira. Rewriting-Based Access Control Policies. 1st International Workshop
on Security and Rewriting Techniques - SecReT 2006, Maribel Fernández, Sep 2006, Venice/Italy.
�inria-00112340�

https://inria.hal.science/inria-00112340
https://hal.archives-ouvertes.fr

SecReT 2006

Rewriting-Based Access Control Policies

Anderson Santana de Oliveira 1,2

INRIA & LORIA
615, Rue du Jardin Botanique, 54600 Villers-lès-Nancy, France

Abstract

In this paper we propose a formalization of access control policies based on term
rewriting. The state of the system to which policies are enforced is represented
as an algebraic term, what allows to model many aspects of the policy environ-
ment. Policies are represented as sets of rewrite rules, whose evaluation produces
deterministic authorization decisions. We discuss the relation between properties
of term rewriting systems and those important for access control, and the impact
of composing policies to these properties.

Key words: Access Control Policies, Term Rewriting Systems

1 Introduction

Term rewriting [1] is a well-established paradigm for specifying, and prototyp-
ing systems. It has been proved useful as the theoretical foundations in the-
orem proving, program transformation, and algebraic specification. In many
practical situations, its straightforward formal background allowed to rapidly
prototype and verify diverse kinds of systems. In the domain of computer
security, term rewriting has been successfully applied to help reasoning about
many of its aspects, notably in verification of security protocols [6,18].

Nevertheless, there are not many applications of term rewriting to access
control policies: up to our knowledge, few approaches have tried to introduce
the use of rewriting into this domain. The reader is referred to see a more
extensive discussion on related work in section 7.

Access control concerns stating which actions, that principals (or subjects)
are allowed to execute in order to manipulate the objects (or resources) of a
given system. The most widespread solution to this problem is to use an access
control matrix, a model adopted in the design of several operating systems.
The lines of the matrix enroll the subjects, the columns list the resources

1 santana@loria.fr
2 Supported by Capes BEX.2120.03-8.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Santana de Oliveira

of the system, and cells contain what rights (read, write, execute, . . .) are
assigned to each case. A request from a subject to perform a certain action
over an object will be granted only if there exists an entry for that action in
the column and line regarding those subject and object.

Many models for access control rely on some modified version of the access
control matrix. For example, military security policies [4] add a confidentiality
levels to subjects and objects, them the (fixed) security policy states that a
subject which cannot write to an object with inferior security level, and that it
cannot read from objects with superior security levels - no reads-up, no writes-
down. Even though the access control matrix is a solution to many access
control models, it is not appropriate to capture more dynamic policies, such
as policies that depend on time, location, and many other possible attributes
of the policy environment.

This paper presents a formalization of access control policies based on term
rewriting. Policies are represented as sets of rewrite rules, whose evaluation
produces authorization decisions, whilst requests and the environment where
policies are enforced are represented as algebraic terms. Since we consider the
policy environment as a “database of facts” under the form of a term, this for-
malization allows us to capture many dynamic aspects that are important for
policy enforcement, e.g. diverse attributes of subjects and resources, referred
as content-dependent conditions in the literature [8].

The main goals are to provide a formal semantics for an expressive access
control policy language, and to use standard methods for checking properties
of the term rewriting systems associated to the policies, which would increase
the trust in the security policy. An example of such properties are absence
of conflicts - no grant and deny are assigned to the same access request. One
advantage of associating properties of term rewriting systems to desired prop-
erties of a policy is that one can check whether the property holds for policy
composition. There are well-known positive results on the preservation of
termination under union of term rewriting systems, for example.

Another goal of this formalization is to be able to facilitate policy en-
forcement. The architecture we propose here clearly separates policy and
enforcement mechanism. Since policies are rewrite rules, a standard rewrite
engine can do the job of applying the policy to requests and evaluating the
results.

The paper is organized as follows: Section 2 recalls some useful defini-
tions on term rewriting systems, Section 3 illustrates by an example what
kind of access control policy we want to express, Section 4 presents what
are the elements of the policy environment, Section 5 presents and discuss
rewriting-based policies, Section 6 describes what kind of security mechanism
is necessary to enforce these policies, Section 7 presents a discussion on related
works, and Section 8 concludes and points out some future developments.

2

Santana de Oliveira

2 Preliminaries on Term Rewriting Systems

We recall some basic definitions on signatures and terms. A signature Σ =
{S,F} is a set of sorts S, together with a set of function symbols, each one
associated to a natural number by the arity function (ar : F → N). Fn is
the subset of function symbols having n for arity, Fn = {f ∈ F | ar(f) = n}.
T (Σ,X) is the set of terms built from a given finite set F of function symbols
and a denumerable set X of variables. The set of variables occurring in a
term t is denoted by Var(t). If Var(t) is empty, t is called a ground term and
T (Σ) is the set of ground terms.A substitution σ is an assignment from X to
T (Σ), written, when its domain is finite, σ = {x1 7→ t1, . . . , xk 7→ tk}.

A rewrite rule is an ordered pair of terms denoted l → r, where l, r ∈
T (Σ,X), and l /∈ X . The terms l and r are respectively called the left-hand
side and the right-hand side of the rule. A rewrite system or term rewriting
system is a (finite or infinite) set of rewrite rules.

Given a rewrite system R, a term t rewrites to a term t′, which is denoted
t →R t′ if there exist a rule t → l of R, a position ω in t, a substitution σ,
satisfying t|ω = σ(l), such that t′ = t[ω ←↩ σ(r)].

A subterm t|ω where the rewriting step is applied is called redex. A term
that has no redex is said to be irreducible for R or in R-normal form.

A rewrite derivation is any sequence of rewriting steps t1 →R t2 →R . . .
A rewrite derivability relation

∗
−→R is defined on terms: t

∗
−→R t′ if there

exists a rewriting derivation from t to t’. If the derivation contains at least

one step, it is denoted by
+
−→R. A term rewriting systems is terminating if all

reduction sequences are finite. It is confluent if for all terms t, u ,v, t
∗
−→R u

and t
∗
−→R s implies u

∗
−→R s and v

∗
−→R s, for some s.

Some researchers have been interested in analyzing whether the properties
mentioned in the previous paragraph are modular. Let R1 and R2 be two
rewrite systems. A property Prop is modular if when Prop is satisfied by R1

and R2, then Prop is satisfied by the union of R1 and R2. Most of the positive
results on the union of term rewriting systems assume the signature of the
composed systems to be disjoint 3 . We denote the union of term rewriting
systems with disjoint signatures by the operator ⊕. Confluence is a mod-
ular property of rewrite systems with disjoint signatures [21]. Termination,
however, is not [20]. In order to obtain positive results for termination, it is
necessary to impose additional syntactic conditions on the rewrite rules. A
rewrite rule l → r is a collapsing rule if r is a variable. A rewrite rule l → r is
said duplicating if there exists a variable that has more occurrences in r than
in l. Given these definitions, we can recall the following results:

Let R1 and R2 be two terminating rewrite systems, then

(i) If neither R1 nor R2 contain collapsing rules, then R1⊕R2 is terminating.

3 The disjointness assumption can be relaxed in the case of constructor systems, if only
constructors are shared by the component signatures [14].

3

Santana de Oliveira

(ii) If neither R1 nor R2 contain duplicating rules, then R1⊕R2 is terminating.

(iii) If one of the systems R1, R2 contains neither collapsing rules nor dupli-
cating rules, then R1 ⊕R2 is terminating.

(1) and (2) are proved in [17]. (3) is proved in [13].

A survey on modularity of various properties of term rewriting systems is
found on [11].

3 Motivating Example

The example that follows has been slightly adapted from the XACML speci-
fication [15], an initiative from the Oasis group to create a standard markup
language for access control. Let us suppose that a medical corporation adopts
the policy below:

(i) A person, identified by his or her patient number, may read any record
for which he or she is the designated patient.

(ii) A person may read any record for which he or she is the designated parent
or guardian, and for which the patient is under 16 years of age.

(iii) A physician may write to any medical element for which he or she is the
designated primary care physician.

(iv) An administrator shall not be permitted to read or write to medical
elements of a patient record.

An application running in the computers of such corporation must ensure
that this policy is respected. Therefore, access control must be applied in
every scenario of the application execution. This is costly, and additionally,
it is not related to the main functionalities which is to electronically manage
the medical business in question.

A possible execution of this system is shown in Figure 1. At a given point
of time, the system is in state si, whose associated database of facts appears
in the first line of the table. Then, the primary physician of a certain patient
record, requires to prescribe a new medical element for this patient (see the
second line of the table). Since this request is allowed, according to the policy
we just described, the system state changes to state si+1 (last line of the table),
containing the updated entry for the medical record.

Here, we assume that the application delivers its state, under the form of a
term, as well as the user requests, to a reference monitor. In practice, this will
require to modify the program in order to capture its state, and to intercept
the control flow for monitoring intervention, every time a resource is to be
accessed.

4

Santana de Oliveira

si patient(“Bart Simpson”, 1, 14, guardian(“Homer Simpson”))
+ record(patient(“Bart Simpson”, 1, 14, guardian(“Homer
Simpson”)), physician(“Julius Hibbert”, 1), antibiotic, pay-
ment(visa)) + physician(“Julius Hibbert”, 1)

Request request (physician(“Julius Hibbert”, 1), writeMedi-
calElements , record(patient(“Bart Simpson”, 1, 14,
guardian(“Homer Simpson”)), physician(“Julius Hibbert”,
1) , antibiotic, payment(Visa)))

si+1 patient(“Bart Simpson”, 1, 14, guardian(“Homer
Simpson”)) + record(patient(“Bart Simpson”, 1, 14,
guardian(“Homer Simpson”)), physician(“Julius Hi-
bbert”, 1), antibiotic and aspirin, payment(visa)) +
physician(“Julius Hibbert”, 1) .

Figure 1. A system state transition after a request to write a medical element

4 The Policy Environment

Regarding access control, one is interested in stating which actions, principals
(or subjects) are allowed to execute in order to manipulate the objects (or
resources) of a given system. The most widespread solution to this problem is
to use an access control matrix where lines list the subjects, columns contain
the objects and cells keep information about the rights (read, right, execute)
assigned to each case.

This schema is enough to address most of the requirements for mandatory
and discretionary access control models, but it is not adequate to express
higher level policies, like the one from our running example, presented in
section 3. For declaring this kind of policy, it is necessary to write sentences
about the current values of attributes of subjects and resources, and not only
their identities. We call policy environment the configuration of all elements
relevant to access control.

An arbitrary application, that must respect a given security policy, called
target system and denoted T , is represented by a set of states and state transi-
tions, which are triggered by access requests. To each state si of T we associate
an algebraic term containing the facts that are true in si. Requests are also
represented as terms (see Figure 1).

The idea we defend here, which was recently exposed in some papers [3,16],
is that access control is one aspect of the application, that can be specified,
implemented and maintained independently. Furthermore, the mechanism
applying a certain policy should be an external entity with respect to the
application. An overview picture of policy enforcement is presented in Fig-
ure 2. The application context in state si together with the current request
R(S, A, O) are delivered to a reference monitor. The reference monitor then
evaluates the request according to the policy. In the case the policy grants

5

Santana de Oliveira

permit(s, a, o)

Si
Security
Manager

S i+1

Context

Policy
Rules

req(s, a, o)

Figure 2. General representation schema

access for the request, the application proceeds.

We note ΣT the signature of the target system T , which provides the
profiles of the constructors to build the representation of the system state.
Consequently, the database of facts at each stage of the execution of T is a
the set ground terms from T (ΣT).

In the example that follows, we show the signature of the terms that appear
in Figure 1. We have used order-sorted specifications to formalize the problem
and the system using Maude [7].

Example 4.1 We use the signature below for medical system of section 3,
where a patient is represented by a term recording his name, number, age,
and a guardian, in this order.

fmod MEDICAL−SYSTEM−SIGNATURE i s
p r o t e c t i n g STRING .
p ro t e c t i n g NAT .

s o r t Pat ient Phys ic ian Record Administrator Guardian
MedicalElements OtherElements .

op pat i en t : S t r ing Nat Nat Guardian −> Pat ient [c to r] .
op admin i s t ra to r : Nat −> Administrator [c to r] .
op guardian : S t r ing −> Guardian [c to r] .
op phys i c i an : S t r ing Nat −> Phys ic ian [c to r] .
op record : Pat ient Phys ic ian MedicalElements

OtherElements −> Record [c to r] .
endfm

In order to better express policies, it is necessary to indicate which sorts
from ΣT are subsorts of subject, action and object, as well as to introduce the
available actions in T .

Example 4.2 The module below illustrates how we can determine subjects,
objects and actions in the medical system presented in Section 3, through the
use of subsorts. Actions are represented as constant symbols for simplicity.

6

Santana de Oliveira

fmod MEDICAL−SYSTEM−TERM−SIGNATURE i s
i n c l ud i ng MEDICAL−SYSTEM−SIGNATURE .
i n c l ud i ng POLICY−SIGNATURE .
subso r t Phys ic ian < Subject .
subso r t Pat ient < Subject .
subso r t Guardian < Subject .
subso r t Administrator < Subject .
subso r t Record < Object .
subso r t MedicalElements < Object .
subso r t OtherElements < Object .
op readRecord : −> Action .
op writeRecord : −> Action .
op readMedicalElements : −> Action .
op writeMedicalElements : −> Action .
op readOtherElements : −> Action .
op writeOtherElements : −> Action .

endfm

This representation allows us to distinguish subjects and objects among
the subterms appearing in the conjunction of ground terms of the target’s
application current state.

5 Rewriting-Based Policies

In this section, we address the problem of specifying access control policies
through term rewriting systems. We present an initial definition of security
policy that characterizes policies syntactically. This definition includes poten-
tially “unsafe” policies. After discussing the desired properties of an access
control policies, we present a refined definition for “safe” policies.

A security policy is a statement of what is, and what is not, allowed [5].
When dealing with access control, a (formal) policy specification language will
help to unambiguously define rules about what actions principals are allowed
to execute over a set of resources. Consequently, a policy specification lan-
guage must encode high level statements into a function from access requests
to authorization decisions.

Let the signature for rewriting-based access control policies be stated as
follows. Requests are represented as ground terms containing the 3-tuple
subject, action and subject, using the following constructor symbol

req : Subject× Action×Object→ Request

Authorized situations are separated from unauthorized ones through the use
of distinct constructors for each case. The signatures for authorization terms
are

{deny, permit} : Subject× Action×Object→ Authorization

The goal of the policy designer is to provide a set of rules that will be used
by the reference monitor to evaluate every incoming request. The resulting

7

Santana de Oliveira

decision does not depend exclusively on the request, but also on the context
of the target application at the time the request is made. The rules of a policy
will define the auth operator, whose signature is

auth : Request× Term→ Authorization

The auth function returns a decision (permit or deny) about a given request,
based on the information contained in the request and in the database of facts,
the Term argument, which is a conjunction of ground terms using an associa-
tive and commutative operator. The full policy signature, ΣP , is illustrated
by the code that follows.

fmod POLICY−SIGNATURE i s
s o r t Object .
s o r t Subject .
s o r t Action .
s o r t Term .
s o r t Request .
s o r t Author izat ion .
subso r t Subject < Term .
subso r t Object < Term .
subso r t Action < Term .
op req : Subject Action Object −> Request [c to r] .
op permit : Subject Action Object −> Author izat ion [c to r] .
op deny : Subject Action Object −> Author izat ion [c to r] .
op auth : Request Term −> Author izat ion .
op + : Term Term −> Term [as soc comm] .

endfm

Definition 5.1 [Security Policy] An access control security policy, P, is a
term rewriting system over T (Σ,X), with Σ = ΣT ∪ΣP , where the top symbol
of the left hand side of each rule is the auth function.

This definition imposes syntactical restrictions on the form of the rewrite
rules, in such way that forces the set of rules of a policy to define the auth
function. The example that follows illustrates how a policy can be declared.

Example 5.2 The following set of rewrite rules translates the natural lan-
guage rules from Section 3 in our formalism.

mod POLICY1 i s
p r o t e c t i n g MEDICAL−SYSTEM−TERM−SIGNATURE .
var p : Pat ient .
var ph : Phys ic ian .
var g : Guardian .
var adm : Administrator .
var me : MedicalElements .
var oe : OtherElements .
vars s1 s2 : S t r ing .
var t : Term .
var n1 n2 : Nat .

8

Santana de Oliveira

r l [patReadRecord] : auth (req (p , readRecord ,
record (p , ph , me , oe)) , p + record (p , ph , me , oe)
+ t) = > permit (p , readRecord , record (p , ph , me , oe)) .

r l [guardReadRecord] : auth (req (g , readRecord ,
record (pat i en t (s1 , n1 , n2 , g) , ph , me , oe)) ,
pa t i en t (s1 , n1 , n2 , g) + record (pat i en t (s1 , n1 , n2 , g) ,
ph , me , oe) + t) => permit (g , readRecord ,
record (pat i en t (s1 , n1 , n2 , g) , ph , me , oe)) .

r l [physWriteMedElem] : auth (req (ph , writeMedicalElements ,
record (p , ph , me , oe)) , record (p , ph , me , oe) + t)
=> permit (ph , writeMedicalElements , record (p , ph , me , oe)) .

r l [admReadMedElem] : auth (req (adm , readMedicalElements ,
record (p , ph , me , oe)) , adm + record (p , ph , me , oe) + t)
=> deny (adm , readMedicalElements , record (p , ph , me , oe)) .

r l [admWriteMedElem] : auth (req (adm, writeMedicalElements ,
record (p , ph , me , oe)) , adm + record (p , ph , me , oe) + t)
=> deny (adm , writeMedicalElements , record (p , ph , me , oe)) .

endm

This is a straightforward implementation of the policy stated in the run-
ning example of this paper. It covers all cases mentioned in the informal rules
presented previously. There are many issues that can complicate policy en-
forcement. For example, the rule application may not terminate, causing the
target system to be blocked waiting for an authorization. In the next section
we discuss what are the desired properties for rewriting-based policies.

5.1 Properties of security policies

Termination

The first interesting property is termination. This will ensure that every
request evaluation is finite, thus avoiding the target application execution to
block indefinitely. Termination of term rewriting systems has been widely
studied and there are many tools available that check termination of term
rewriting systems such as CiMe, Approve, Cariboo, to mention a few 4 . The
idea is that a refinement discipline for policy deployment has to be followed by
users, and that many verification steps have to be applied as needed, before
enforcing some policy.

Absence of conflict

The combined use of positive and negative authorizations brings two main
problems: incompleteness, when no authorization is specified for a certain

4 Check for references and results on the Termination Competition home page:
http://www.lri.fr/∼marche/termination-competition/

9

http://www.lri.fr/~marche/termination-competition/

Santana de Oliveira

request, and inconsistency, when for an access there are both negative and
positive authorizations. Classical approaches for policy specification adopt
either closed policy or open policy assumption, meaning that only positive or
negative authorizations need to be specified, respectively. This has shown to
be restrictive in practice. The current trend is to allow the user to discriminate
between what is and what is not allowed [8].

In the case of rewriting-based policies, conflicts can be avoided if the corre-
sponding rewriting system has the confluence property. This will ensure that
a single response is derived from a given request and from the application
current state.

Some policy specification languages propose conflict resolution strategies,
that assign priorities to the conflicting cases. For example, one can say that
deny overrides any other parallel authorization computed for a certain request.
Another example, that sounds more difficult to implement is most specific
overrides that requires to provide an order among actions and objects.

Completeness

Completeness is usually achieved by assuming that one of either the open
or closed policy operates as a default. By using an incremental discipline, the
user can early detect this problem by using tools that are directed to checking
the sufficient completeness of term rewriting systems. A term rewriting system
is called complete if all ground terms can be reduced to a normal form that
only contains constructors. Furthermore, in the case of our policies, the more
basic algorithms can be applied, since the form of the rules is simpler than in
the general case: we do not have conditions, nor constraints and the possible
normal forms are known in advance, they must be either permit or deny terms.

Alternatively, the user can make use of rules determining the default case
to be applied in the case no redex exists for a request. These rules are either
of the form

auth(req(s1, a1, o1), t)→ deny(s1, a1, o1)
or

auth(req(s1, a1, o1), t)→ permit(s1, a1, o1)

for closed or open policy respectively. These rules must be enforced with the
help of a strategy that says this rule will be applied only when all other ones
fail.

Given this discussion on the desired properties of an access control security
policies, we are ready to introduce the following definition:

Definition 5.3 [Trusted Security Policy] A trusted access control security
policy is a terminating and confluent term rewriting system, P, on the signa-
ture Σ = ΣT ∪ ΣP , that completely defines the auth function.

The word trust was chosen to express that the system administrator can
have much more confidence in a rewriting-based policy which has the proper-

10

Santana de Oliveira

ties of termination , confluence and sufficient completeness. This means that
the policy unambiguously states authorizations.

5.2 Policy composition

Policy composition is an issue with increasingly interest nowadays. The main
problems associated with composition are related with the following question:
what can we expect when two companies, departments, etc, decide to put their
policies together to work on certain projects. Assumed that policies have been
specified and developed correctly in isolation, and they are free of ambiguities
and conflicts, the question is to know whether the new joint policy will retain
these desired characteristics.

Some approaches, like XACML [15] and Polymer [3] adopt composition
operators that are responsible for solving conflicts. The operator has a built-
in strategy for choosing what decision must be taken in case of conflicting
request responses. In this preliminary work, we do not propose composition
operators, but we consider some verification that can be performed to preserve
trusted policies, as stated in Definition 5.3.

Since trusted policies are terminating and confluent term rewriting sys-
tems, which ensures the good properties of being absent of conflicts and de-
terministic, one can check the syntactical restrictions exposed in Section 2.

6 Security Mechanisms

In this section we present how security mechanisms can enforce rewriting-
based policies, and how systems can be considered secure with respect to this
formalization.

A Security mechanism ensures that a target system do respect the policy
being enforced during its whole execution. A state transition of T , si 7→ si+1,
corresponds to an access request from a subject to execute an action over a
resource. The security mechanism must apply the rewrite rules provided by
a policy P, over the terms of T and the current request, auth(req(s, a, o), t).
In the case it evaluates to permit(s, a, o), the computation of T can continue,
if it evaluates to deny(s, a, o) then the enforcement mechanism must abort
the execution of T , this characterizes an execution monitoring security mech-
anism [19].

A given state ti of a target’s execution is considered valid if the information
contained in that state is authentic, which means that the database of facts is
not modified by an external malicious entity, and that this state was reached
through a sequence of positive authorizations.

Definition 6.1 [Secure System] A target system T is said secure w.r.t. a
policy P, if it starts from a valid state t0, and for every transition state
ti 7→ ti+1 a new valid state is produced.

11

Santana de Oliveira

This definition is close to classical automata-based approaches of secure
systems, from Goguen and Meseguer [10], and more recently, Scheneider [19],
where assertions are stated about the possible execution paths of the target
system.

7 Related Work

The works more closely related with the one described in this paper are recent
initiatives that introduce term rewriting to the specification of security poli-
cies. In [9], term rewriting is used to control the confidentiality level of data, by
describing downgrading functions. Whilst in [2], authors model access control
lists and role based access control as term rewrite systems. They characterize
consistency, totality, and completeness of policies w.r.t the properties of the
rewriting systems defining them. Therefore, the second approach shares some
of the goals of this paper, with the difference that we focus on the dynamic
aspects of the policy environment to specify authorizations, while their work
is directed to capturing the access control lists and role-based access control
models.

Most of the formal approaches based on rules to specify security policies
concern some dialect of a logic language. The reasons are clear: logic languages
have formal semantics, they are suitable for implementation and validation,
thus facilitating policy verification. One of the most representative work on
this line of research is presented in [12] where a proposal for a logic-based lan-
guage that attempts to join expressiveness and performance is made. It allows
representing different policies and protection requirements, since it includes
four main ingredients: explicit authorizations, using an access control matrix
(called authorization table); policy propagation rules, to control access that is
indirectly derived from the authorization table; conflict resolution operators;
and a policy language for specifying decisions. Authorization specifications
are stated as logic rules defined over a small set of predicates. In order to
keep complexity under control the format of the rules is restricted. The au-
thors of [12] present a materialization technique for producing, storing, and
updating the stable model of the policy. The model is computed on the initial
specifications and updated incrementally.

With respect to policy enforcement, the work presented here has relation-
ships with the Polymer system [3]. Polymer adopts execution monitoring to
enforce access control on Java programs. Policies are first-class objects struc-
tured to be arbitrarily composed with other policies. Program monitors, are
formalized as abstract machines, called edit automata, that examine the se-
quence of application program actions and transform the sequence when it
deviates from a specified policy. A policy compiler compiles program mon-
itors defined in the Polymer language into plain Java and then into Java
bytecode. Then, a second tool is a bytecode rewriter that processes ordinary
Java bytecode, inserting calls to the monitor in all the necessary places.

12

Santana de Oliveira

8 Conclusions and Future Work

We have discussed in this paper a formalization for access control policies using
term rewriting. The policy language allows users to declare rules which once
matched against the target system’s current state produce an authorization
decision. The language is expressive enough to capture different conditions
important for defining authorizations in access control. This work sets a ba-
sis for applying the well-known techniques developed by the term rewriting
community to reason about access control, since we have established a cor-
respondence between the properties of policies and those of term rewriting
systems.

As future work, we shall investigate how to solve conflicts using rewriting
strategies, and how we can deal with composition of access control policies
under the term rewriting perspective. Additionally, we shall build prototypes
that validate this model.

9 Acknowledgments

I would like to thank my advisors Claude and Hélène Kirchner for the fruitful
discussions on this subject, and also Judson Santiago and Horatiu Cirstea for
reading previous versions of this paper.

References

[1] Baader, F. and T. Nipkow, “Term Rewriting and All That,” Cambridge
University Press, 1998.

[2] Barker, S. and M. Fernandez, Term rewriting for access control, in: Proceedings
of the 20th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security (DBSec’2006), LNCS, 2006.

[3] Bauer, L., J. Ligatti and D. Walker, Composing security policies with
polymer, in: PLDI ’05: Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation (2005), pp. 305–314.

[4] Bell, E. D. and L. J. LaPadula, .secure computer systems: Mathematical
foundations, Technical Report Mitre Report ESD-TR-73-278 (Vol. I-III), Mitre
Corporation (1974).

[5] Bishop, M., “Introduction to Computer Security,” Addison Wesley, 2004.

[6] Cirstea, H., Specifying authentication protocols using rewriting and strategies.,
in: I. V. Ramakrishnan, editor, PADL, Lecture Notes in Computer Science 1990

(2001), pp. 138–152.

[7] Clavel, M., F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer and
J. F. Quesada, Maude: specification and programming in rewriting logic., Theor.
Comput. Sci. 285 (2002), pp. 187–243.

13

Santana de Oliveira

[8] di Vimercati, S. D. C., P. Samarati and S. Jajodia, Policies, models, and
languages for access control., in: S. Bhalla, editor, DNIS, Lecture Notes in
Computer Science 3433 (2005), pp. 225–237.

[9] Echahed, R. and F. Prost, Security policy in a declarative style, in: PPDP ’05:
Proceedings of the 7th ACM SIGPLAN international conference on Principles
and practice of declarative programming (2005), pp. 153–163.

[10] Goguen, J. A. and J. Meseguer, Security policies and security models., in: IEEE
Symposium on Security and Privacy, 1982, pp. 11–20.

[11] Gramlich, B., On termination and confluence properties of disjoint and
constructor-sharing conditional rewrite systems., Theor. Comput. Sci. 165

(1996), pp. 97–131.

[12] Jajodia, S., P. Samarati, M. L. Sapino and V. S. Subrahmanian, Flexible support
for multiple access control policies, ACM Trans. Database Syst. 26 (2001),
pp. 214–260.

[13] Middeldorp, A., A sufficient condition for the termination of the direct sum of
term rewriting systems, in: LICS (1989), pp. 396–401.

[14] Middeldorp, A. and Y. Toyama, Completeness of combinations of constructor
systems., in: R. V. Book, editor, RTA, Lecture Notes in Computer Science 488

(1991), pp. 188–199.

[15] Moses, T., Extensible access control markup language (xacml) version 2.0,
Technical report, OASIS (2005).

[16] Pavlich-Mariscal, J. A., L. Michel and S. A. Demurjian, A formal enforcement
framework for role-based access control using aspect-oriented programming., in:
L. C. Briand and C. Williams, editors, MoDELS, Lecture Notes in Computer
Science 3713 (2005), pp. 537–552.

[17] Rusinowitch, M., On termination of the direct sum of term rewriting systems,
Information Processing Letters 26 (1987), pp. 65–70.

[18] Rusinowitch, M., S. Stratulat and F. Klay, Mechanical verification of an ideal
incremental abr conformance algorithm., J. Autom. Reasoning 30 (2003),
pp. 53–177.

[19] Schneider, F. B., Enforceable security policies, ACM Trans. Inf. Syst. Secur. 3

(2000), pp. 30–50.

[20] Toyama, Y., Counterexamples to termination for the direct sum of term
rewriting systems, Information Processing Letters 25 (1986), pp. 141–143.

[21] Toyama, Y., On the church-rosser property for the direct sum of term rewritig
systens, Journal of the ACM 34 (1987), pp. 128–143.

14

	Introduction
	Preliminaries on Term Rewriting Systems
	Motivating Example
	The Policy Environment
	Rewriting-Based Policies
	Properties of security policies
	Policy composition

	Security Mechanisms
	Related Work
	Conclusions and Future Work
	Acknowledgments
	References

