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Abstract 
 

Writer adaptation is the process of converting a 
generic (writer-independent) handwriting recognizer 
into a personalized (writer-dependent) recognizer with 
improved accuracy for a particular user. While training 
the generic recognizer uses large amounts of data from 
several writers, the adaptation process uses only a few 
samples from a single user. 

In this paper we present a) an automatic approach 
for identifying allographs (character shapes/styles) from 
handwritten characters through clustering, b) a novel 
architecture for a personalizable recognizer that utilizes 
allograph information, and c) a kernel based approach 
for personalizing the recognizer. Using the new 
approach, personalization results with twenty one users 
indicate that handwritten single character recognition 
errors can be reduced by over 24% (or 41%) using as 
few as 5 (or 15) samples. 

Keywords: Writer adaptation, personalization, 
allographs, handwriting, character recognition. 

1. Introduction 
It is well known that a user’s handwriting is unique 

and can be used for identification [1]. Commercial 
handwriting recognition systems attempt to reduce the 
impact of writer variation through the use of large 
training datasets comprising data from several different 
users. However, as shown in [1], even when handwriting 
samples from as many as 1500 users are available, there 
is sufficient variation in the handwriting to uniquely 
identify each of the users.  

From a machine learning perspective, such variation 
makes handwriting recognition difficult for computers. 
While intra-user characters (from the same user) have 
small variations, inter-user characters (from different 
users) have large variations and contribute to recognition 
errors. As a result, learning from training data obtained 
from one set of users (even hundreds of users) does not 
necessarily produce models that generalize well to 
unseen handwriting styles. The computer recognition 
experience using a generic recognizer can be especially 
poor for users with rare writing styles. One explanation 
for the poor performance is that the trained generic 

recognizer is incomplete as it has not learned to 
recognize unseen user’s writing style(s). 

A pragmatic approach to improving recognizer 
performance on unseen writing styles is writer 
adaptation (or personalization). Personalization enables 
the recognizer to adapt to a particular user’s handwriting 
by collecting and learning from additional data samples 
from the user. Clearly, there is a trade off between the 
number of training samples needed from the user, the 
achieved reduction in error rate, and the perceived 
inconvenience to the user. The larger the amount of 
training data, the better the personalized recognizer, but 
the more inconvenienced the user.  

The challenge lies in finding a sweet-spot where we 
get the most improvement in accuracy with the least 
number of user samples. Such a sweet spot is likely to 
exist, as the first few samples from the user produce the 
most dramatic improvement in recognition accuracy with 
the user being least inconvenienced.  

In this paper, we present a novel allograph (character 
shape/style) based recognizer that is well suited for 
personalization. Previous approaches are reviewed in 
Section 2, and a new architecture for an allograph based 
personalizable recognizer is presented in Section 3. 
Sections 4 and 5 present experiments and results, 
respectively. Conclusions are offered in Section 6.  

2. Background 
Personalization of recognizers to improve error rates 

is a well studied problem. Several approaches have been 
proposed with varying degrees of success. Matic et al. [2] 
addressed the problem of writer-dependent recognition 
of digits and upper case characters through the use of a 
time delay neural network as a preprocessor and an 
optimal hyperplane classifier for personalization. Platt [3] 
exploited the fact that the output of a neural network is 
characteristic of the input, even when the output is 
incorrect, and constructed an output adaptation module 
that adapts the recognizer. Connell and Jain [4] first 
identify writer-independent writing styles (called 
lexemes), and then adapt these lexemes to a particular 
user's handwriting.  



  
 
3. Method 

We propose a personalizable recognizer architecture 
that is completely based on machine learning. Character 
writing styles (allographs) are identified using an 
hierarchical agglomerative clustering approach using 
dynamic time warping (DTW) as a distance measure. 
The generic recognizer comprises two neural network 
classifiers whose outputs are combined. The first neural 
network (allograph-NN) uses allograph information, 
while the second (base-NN) does not. A linear combiner 
is used to produce the generic (un-personalized) 
recognizer. The personalizer is a support vector machine 
that learns to optimally combine the two neural networks 
based on new user samples. 
3.1. Finding Writing Styles using Clustering 

Hierarchical clustering techniques can be used to 
learn letter handwriting styles from data. Two main 
approaches exist: (a) a top down approach of detecting 
sub-styles [5-6], and (b) a bottom-up clustering approach 
[7-8]. In this paper, the bottom-up approach is adopted 
because the obtained style knowledge can be directly 
used in the recognizer.  

A clustering C of handwritten letters X = {x1, x2, …, 
xM} defines a partitioning of the data into a set {c1, c2, 

…, cK} of K disjoint sets, such that 
1

K k

k
c

=U = X. The 

clustering C is computed independently for every letter. 
An hierarchical clustering algorithm produces an 
hierarchy of nested clusters [C1, C2, …, CM] such that 
Cm−1 is a subset of Cm. This hierarchy is built in M steps, 
where a clustering at step m is produced from the 
clustering produced at step m−1. At step 1, every 
member in the sample set X represents a cluster of its 
own. Using a dissimilarity function D(ck,ck’) of two 
clusters, the following algorithm is applied: 
a) Initialize C1 = {{x1},{x2},…,{xM}}, where each 

sample is a cluster by itself.  
b) For m = 2, …., M: obtain the new clustering Cm by 

merging the two most similar clusters ckmin and ck’min 
of Cm−1. The closest clusters are defined by 

(kmin, k′min) = arg min(k, k′),k≠k′ D(ck,ck′) 

3.1.1. Cluster and Sample Dissimilarity Function 

The cluster dissimilarity function D(ck,ck′) is defined 
in terms of the ink sample dissimilarity function 
D(xk,xk′). Each ink sample is first isotropically 
normalized and centered within a fixed size rectangle. 
For ink samples k (comprising, say, S strokes), and k′ 
(comprising, say, S′ strokes), 
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where P and P′ are the corresponding re-sampled 
coordinate vectors of samples k and k′, respectively, and 
N is the number of sampling points. An element p in the 

vector P has 3 co-ordinates (x, y, θ) where x, y are the 
Cartesian coordinates of the point p and θ is the estimate 
of the slope at the same point. 
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The decision to use the maximum rather than average or 
the minimum to define the distance between ink samples 
favors compact clusters. Since distance between clusters 
with different stroke lengths is ∞, they will not be 
merged until the very end. At that point the merging 
would have actually stopped. 

3.1.2. Number of Clusters 

A key problem in clustering algorithms in general is 
the determination of the number of clusters. In our 
experiments we determined the number of clusters for 
every letter by defining a threshold Dmax above which no 
further merging of clusters occurs. This means that the 
active clusters at the time that merging stops represent 
the styles of the corresponding letter. Accordingly, the 
number of resulting styles is different from one letter to 
the other, depending on how diverse the letter shapes 
are.  

3.1.3. Clustering Results 

The hierarchical clustering algorithm described 
previously was applied to a large set of ink samples (see 
Section 4.1). Figure 1 shows example styles for the 
letters q, t, and X and their relative frequencies among 
writers.  
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Figure 1. Styles and distributions for q, t and X. 

3.1.4. Selecting Allographs 

Each choice of a DTW distance threshold when applied 
to the hierarchical cluster produces a set of disjoint 
clusters. The larger the distance threshold, the fewer the 
number of clusters obtained. For the experiments 
reported in this paper, a threshold was chosen to obtain 
2002 unique clusters for the 100 characters (printable 
ASCII characters including the euro and pound signs). 
With 2002 clusters and 100 characters, there are 
approximately 20 allographs per character representing 
various written forms of the character. 



  
 
3.2. Feature Vectors 

Each handwritten character may be viewed as a 
sequence of (x,y,t) segments representing continuous 
strokes. One or more strokes written in succession make 
up a character. Each handwritten character was 
processed to obtain sixty five polynomial features using 
the approach in Rowley et al [10]. 

3.3. Training Base and Allograph Classifiers 
Two recognizers are trained using these feature 

vectors. The first recognizer (allograph-NN) is shown in 
Figure 2 and comprises a neural network and a linear 
classifier in a cascade.  

 

Figure 2. The allograph classifier. 

The neural network has 2002 outputs and is trained 
to map the character feature vector to character 
allographs. A linear combiner (allograph-folder) is 
trained using gradient descent to fold the 2002 
allographs back into the 100 character classes. The linear 
folder is considered to be a part of the allograph-NN. 
The second recognizer (shown in Figure 3) is a neural 
network (base-NN) that does not use allograph 
information and is trained to directly map the feature 
vectors to the output classes. Both neural networks are 
multi-layer-perceptrons (MLP) with two layers each. 
While the allograph-NN has 1024 hidden nodes, the 
base-NN has 600 hidden nodes. Backpropagation was 
used to train the neural networks with cross-entropy as 
the error function [9].  

 

Figure 3. The base classifier. 

3.4. Combiner for improved accuracy 
The two neural networks (allograph-NN and base-

NN) have different architectures. Further, the former is 
trained using allograph information, while the latter is 
not. Due to these differences, the errors made by these 
two classifiers can be expected to be significantly 
different. Any combiner built using these two classifiers 
will likely have a lower error rate than either of them. A 
simple linear classifier that combines the outputs of the 
allograph-NN and the base-NN comprises the writer-
independent (unpersonalized) recognizer.  

3.5. Personalizer 
The personalizer’s role is to adapt the writer-

independent recognizer to the current user providing 
new training samples. It is designed to replace the linear 
combiner in the unpersonalized recognizer with one that 
is optimal for the new user. The basic personalizer 
architecture is shown in Figure 4. 

 

Figure 4. The unpersonalized recognizer and 
Personalizer are arranged in a cascade. 

Any suitable combiner classifier that can learn from 
data can be used to replace the linear combiner. In this 
work, support vector machines (SVMs) were chosen for 
the following reasons: 
1. Generalization: SVMs are well known for their 

generalization properties. Since, the number of 
samples collected (per class) from the user will be 
very small (typically less than 10 or 15), it is very 
important that generalization is achieved with such 
few samples. In contrast to SVMs, training neural 
networks to generalize well with very limited training 
data is a challenging problem. 

2. Regularization: The most common approach to 
achieving good generalization with small data sets is 
regularization. SVMs provide a natural way of 
regularization. The model selection process can be 
used to effectively control capacity and limit over-
fitting. 

3. Multi-class: Multi-class SVMs can built using several 
two-class SVMs. This allows for finer control on 
accuracy on a per class basis. Since only the linear 
combiner is being personalized, not all two-class 
SVMs are necessary. One can simply focus on 
including only those pairs of classes that have the 
highest confusion. 

4. Complexity: When the one-vs-one approach is used 
the number of two class classifiers grows 
proportional to C(n,2) i.e., O(n2). This can be a 
problem with a large number of classes. However, 
the support vectors in an SVM are a subset of user 
provided samples. Thus, even though the number of 
possible classes and classifiers grows quickly, the 
total number of support vectors is bounded by the 
number of user samples, which is small. Further, 
since only the combiner is being personalized, only a 
small subset of the C(n,2) classifiers need to be built. 
Each of the dropped classifiers can be represented by 



  
 

a single bit indicating that the unpersonalized 
recognizer’s output is to be used instead1. 

4. Experiments 

4.1. Datasets 
Two data sets were used in the personalization 

experiments: 
1. The first set (non-personalization set) consisted of 

200,000 handwritten characters from 215 users. 
This data is used for the generic recognizer.  

2. The second set (personalization set) consisted of 
84,000 samples from 21 new users and is designed 
for evaluating the personalization process. 

Data in both sets was uniformly distributed over 100 
possible western handwritten character classes given by: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 
0123456789 
!"#$%&'()*+,-
./:;<=>?@[\]^_{|}~¢£¥§°±€ 

The 200,000 ink samples from the non-
personalization set were hierarchically clustered to 
obtain 2002 allographs. These clusters were used to 
assign allograph labels for each of the 200,000 samples. 

4.2. Generic Recognizer 
The generic recognizer comprises two classifiers: a) 

the allograph-NN (which also contains the allograph-
folder), and b) the base-NN. The non-personalization set 
was shuffled and split into 3 parts: 160,000 samples to 
be used for training, 20,000 samples to be used for 
validation (to determine when to stop training), and the 
remaining 20,000 samples to be used for testing. The 
reported accuracies for the generic recognizer on the 
non-personalization data set are the ones from the 
20,000 test set. In each of the figures, the first 
percentage value indicated on a classifier is the error rate 
on this test set. 

The allograph-NN is a two layered multi-layer 
perceptron (tanh nonlinearity) with 1024 nodes in the 
hidden layer and 2002 output nodes (one per allograph). 
The allograph-folder is a simple linear combiner that 
maps the allograph-NN outputs to the 100 output 
classes. The base-NN is also a two layered multi-layer 
perceptron (tanh nonlinearity) with 600 hidden nodes 
and 100 outputs (one per output class).  

All classifiers (allograph-NN, allograph-folder, and 
base-NN) were independently trained on the non-
personalization set using backpropagation and cross-
entropy as the error measure. The generic combiner is a 
simple linear classifier with 2202 inputs and 100 
outputs. Its inputs comprised all of the outputs of the 
allograph-NN, the allograph-folder and the base-NN.  

                                                           
1 For dropped pairs, during the SVM voting step, the 
corresponding pair of unpersonalized combiner’s outputs 
can be compared to obtain the vote. 

4.3. Personalizer 
The personalizer is a 100-class SVM using up to 

C(100,2) = 4950 2-class SVMs. A unique personalizer is 
trained for each of the 21 users.  

The 84,000 samples in the personalization data set 
produce 40 samples per character for each of the 21 
users. Up to 15 samples per character are used to train 
the personalizer. The remaining 25 samples per character 
are used purely for testing. We do not expect real users 
to provide more than 15 samples per character for 
personalization. However, having a large test set (25 or 
more samples per char) gives us a reliable way of 
evaluating the personalized recognizer.  

Three different personalizers were built for each 
user, utilizing k = 5, 10, and 15 user samples (per class). 
These k-sample sets were incrementally selected, i.e., for 
example the k = 10 set was obtained by adding five new 
sample to the k = 5 set. The k samples were used to not 
only train the recognizer, but also regularize it. ceil(k/2) 
samples were used for training and floor(k/2) samples 
were used for model selection. The RBF kernel was 
used. SVM model selection was performed using a 
simple grid-search [11] with C in {2-5, 2-4,…, 214, 215} 
and γ in {2-10, 2-9,…, 23, 24}. The (C,γ) parameters from 
the model that gave the best error rate on the floor(k/2) 
samples (not used for training the SVM) was chosen for 
the personalizer. This error rate is reported as the error 
rate of the personalized recognizer. 

5. Results 

5.1. Base Recognizer 
The base-NN (shown in Figure 3) achieved a test 

error rate of 7.8%. When tested on data from the 21 
users in the personalized dataset (not included in the 215 
users), the error rate increased to 9.36%. This is a 
relative increase of 20% in the error rate. Such a large 
increase in the error rate clearly indicates that the inter-
user variation is much smaller than the intra-user 
variation in handwriting styles.  

5.2. Allograph Recognizer 
The allograph classifier (Figure 2) attempts to predict 

not only the character label but also the writing style of 
the character. On the non-personalized dataset, the 
allograph classifier gets an error rate of 24.65%. The 
error rate is very large.  

However, when we simply fold the 2002 character 
styles into their associated 100 character classes (simple 
folder), the error rate drops to 8.25%. For any given 
character, the simple folder returns the sum of the 
allograph outputs corresponding to that character.  

A better folder can account for confusable allographs 
among different classes. When a simple linear folder 
(learned weighted sum over all 2002 outputs) is used the 
unpersonalized test error rate drops to 5.9%. However, 
the error rate on the personalization test set dramatically 



  
 
increases to 11.40%. This increase in error rate (93%) is 
larger than that observed for the base recognizer (20%), 
indicating that the allograph distribution varies 
significantly between the 215 users in the non-
personalization data set and the 21 users in the 
personalization data set. However, previous work [3] has 
shown that even though the allograph distribution varies, 
for any new user the probability distribution over the 
classifier outputs is similar over several samples. In 
other words, though the error rate increases, the new 
user errors are predictable. Thus, the personalizer can 
learn to reduce these errors. 

5.3. Generic Recognizer 
The unpersonalized combiner (shown in Figure 5) is 

a linear classifier that takes as input the 2002 outputs of 
the allograph classifier, the 100 outputs of the allograph 
folder, and the 100 outputs from the base classifier. It 
maps these inputs to the 100 output classes. The 
unpersonalized combiner achieves a test error rate of 
5.8% on the non-personalized data set and a 
corresponding 9.51% test error rate on the personalized 
data set. The performance slightly improves. 

 

Figure 5. Unpersonalized Recognizer. 

5.4. Personalized Recognizers 
A unique personalized recognizer (Figure 6) was 

built for each of the 21 users in the personalized data 
sets. The personalizer reduces the mean error rate from 
9.51% to 5.64%. This relative reduction in error rate of 
over 40.6% clear indicates that the personalizer is 
effective in tuning the recognizer to each of the 
individual users. Table 1 presents a summary of the 
performance before and after personalization. Figures 7 
and 8 present the error rates for each of the users before 
and after personalization using 15 samples. The 
personalizer reduced the error rate for 20 of the 21 users. 
However, on one user (user 12 in Figure 7), the number 
of errors increased slightly by 3.7% (relative increase).  

The training time for each personalizer was less than 
300 seconds (5 minutes). Each pair-wise SVM classifier 
(taking 8 samples for the first class and 8 samples for the 
second class) takes about 0.27 milliseconds to train on a 
Pentium 3.0 GHz machine. Training all 4950 pair-wise 
classifiers take only 1.33 seconds. However, this has to 
be repeated for each of the 255 (C,γ) settings for model 
selection using grid search. Using more advanced model 

selection methods [12] can reduce this by one or two 
orders of magnitude. Further reduction in training times 
can be achieved by building only those pair-wise 
classifiers that correspond to the largest values in the 
confusion matrix. Class pairs that have no confusion can 
be dropped. With all unpersonalized error rates under 
15%, for the 100 class problem used in this paper, this 
simple approach has the potential to produce speed 
improvements of over 6 times. Further, such an approach 
may be the only way to build the personalizer when the 
number of classes is very large. For example, East-Asian 
languages (Chinese, Japanese and Korean) typically 
have several thousand characters. User may be expected 
to provide a few samples only for the most 
misrecognized characters. 

 

Figure 6. Personalizer architecture: The 
personalizer reduces the error rate from 9.51% to 
5.64% using 15 samples (per character). 
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Figure 7. Percentage error before and after 
personalization for the 21 users. 
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Figure 8. Percent improvement in error rate. The 
users were sorted based on their improvement. 
While 20 users benefited from personalization and 
one user’s error rate slightly increased after 
personalization. 



  
 

Table 1. Accuracy of different recognizers. 

Test Error 
Classifier Generic  

data set 
Personalization 

data set 
Base-NN 7.80% 9.58% 

Allograph-NN 
(Simple Folder) 8.25% - 

Allograph-NN 
(Linear Folder) 5.90% 11.40% 

Generic (Fig. 5) 5.80% 9.51% 
Personalized (Fig. 6) - 5.68% 

 

5.5. Effect of the number of user samples 
During personalization, the greater the number of 

samples required from the user, the lower the 
personalized error rate, but greater the user discomfort. 
The rate of improvement is expected to diminish with 
increasing number of samples. Personalization 
experiments were repeated with 5, 10, and 15 samples 
(per character) from each user. Figure 9 shows the 
personalized error rate as a function of the number of 
user samples.  
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Figure 9. The personalized error percentage as a 
function of the number of samples provided by the 
user. Users were sorted based on their 
unpersonalized error rate (zero samples). The thick 
line shows the mean percent error after 
personalization and the dashed lines show one 
standard deviation bounds. 

The personalized error rate was 7.37%, 6.06%, and 
5.64%, with 5, 10, and 15 samples from the user. These 
values correspond to a relative reduction of 23%, 36%, 
and 41%, respectively. The drop in error rate is the 
highest in the first five samples. The error rate continues 
to decrease even after 15 samples. However, given the 
rate of improvement, it appears that collecting more than 
10 or 15 samples from the user may not warrant the 
subsequent reduction in the error rate. One approach to 
expanding the number of training samples is through the 
judicious use of ink based distortions. We plan to 
explore the use of such distortions in future work. 

6. Conclusion 
We presented a clustering approach for identifying 

allographs and a novel personalizable recognizer that 
utilizes allograph information. The personalizer is a 
support vector machine that acts as a combiner and tunes 
itself to reduce recognizer errors for a particular user. 
Experimental results on 21 users clearly indicate that the 
new approach reduces handwritten single character 
recognition errors by over 24% (or 41%) using as few as 
5 (or 15) samples. The personalizer takes less than a few 
minutes to train and the pair-wise SVM model allows the 
personalizer to scale to a large number of classes. Future 
work involves the use of sparse multi-class SVMs for 
scaling to large classes and ink distortion for reducing 
the number of user samples needed for personalization. 
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