
HAL Id: inria-00112632
https://inria.hal.science/inria-00112632

Submitted on 9 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allograph Based Writer Adaptation for Handwritten
Character Recognition

Kumar Chellapilla, Patrice Simard, Ahmad Abdulkader

To cite this version:
Kumar Chellapilla, Patrice Simard, Ahmad Abdulkader. Allograph Based Writer Adaptation for
Handwritten Character Recognition. Tenth International Workshop on Frontiers in Handwriting
Recognition, Université de Rennes 1, Oct 2006, La Baule (France). �inria-00112632�

https://inria.hal.science/inria-00112632
https://hal.archives-ouvertes.fr

Allograph Based Writer Adaptation for Handwritten
Character Recognition

Kumar Chellapilla Patrice Simard Ahmad Abdulkader
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
kumarc@microsoft.com

Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
patrice@microsoft.com

Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
ahmadab@microsoft.com

Abstract

Writer adaptation is the process of converting a
generic (writer-independent) handwriting recognizer
into a personalized (writer-dependent) recognizer with
improved accuracy for a particular user. While training
the generic recognizer uses large amounts of data from
several writers, the adaptation process uses only a few
samples from a single user.

In this paper we present a) an automatic approach
for identifying allographs (character shapes/styles) from
handwritten characters through clustering, b) a novel
architecture for a personalizable recognizer that utilizes
allograph information, and c) a kernel based approach
for personalizing the recognizer. Using the new
approach, personalization results with twenty one users
indicate that handwritten single character recognition
errors can be reduced by over 24% (or 41%) using as
few as 5 (or 15) samples.

Keywords: Writer adaptation, personalization,
allographs, handwriting, character recognition.

1. Introduction
It is well known that a user’s handwriting is unique

and can be used for identification [1]. Commercial
handwriting recognition systems attempt to reduce the
impact of writer variation through the use of large
training datasets comprising data from several different
users. However, as shown in [1], even when handwriting
samples from as many as 1500 users are available, there
is sufficient variation in the handwriting to uniquely
identify each of the users.

From a machine learning perspective, such variation
makes handwriting recognition difficult for computers.
While intra-user characters (from the same user) have
small variations, inter-user characters (from different
users) have large variations and contribute to recognition
errors. As a result, learning from training data obtained
from one set of users (even hundreds of users) does not
necessarily produce models that generalize well to
unseen handwriting styles. The computer recognition
experience using a generic recognizer can be especially
poor for users with rare writing styles. One explanation
for the poor performance is that the trained generic

recognizer is incomplete as it has not learned to
recognize unseen user’s writing style(s).

A pragmatic approach to improving recognizer
performance on unseen writing styles is writer
adaptation (or personalization). Personalization enables
the recognizer to adapt to a particular user’s handwriting
by collecting and learning from additional data samples
from the user. Clearly, there is a trade off between the
number of training samples needed from the user, the
achieved reduction in error rate, and the perceived
inconvenience to the user. The larger the amount of
training data, the better the personalized recognizer, but
the more inconvenienced the user.

The challenge lies in finding a sweet-spot where we
get the most improvement in accuracy with the least
number of user samples. Such a sweet spot is likely to
exist, as the first few samples from the user produce the
most dramatic improvement in recognition accuracy with
the user being least inconvenienced.

In this paper, we present a novel allograph (character
shape/style) based recognizer that is well suited for
personalization. Previous approaches are reviewed in
Section 2, and a new architecture for an allograph based
personalizable recognizer is presented in Section 3.
Sections 4 and 5 present experiments and results,
respectively. Conclusions are offered in Section 6.

2. Background
Personalization of recognizers to improve error rates

is a well studied problem. Several approaches have been
proposed with varying degrees of success. Matic et al. [2]
addressed the problem of writer-dependent recognition
of digits and upper case characters through the use of a
time delay neural network as a preprocessor and an
optimal hyperplane classifier for personalization. Platt [3]
exploited the fact that the output of a neural network is
characteristic of the input, even when the output is
incorrect, and constructed an output adaptation module
that adapts the recognizer. Connell and Jain [4] first
identify writer-independent writing styles (called
lexemes), and then adapt these lexemes to a particular
user's handwriting.

3. Method

We propose a personalizable recognizer architecture
that is completely based on machine learning. Character
writing styles (allographs) are identified using an
hierarchical agglomerative clustering approach using
dynamic time warping (DTW) as a distance measure.
The generic recognizer comprises two neural network
classifiers whose outputs are combined. The first neural
network (allograph-NN) uses allograph information,
while the second (base-NN) does not. A linear combiner
is used to produce the generic (un-personalized)
recognizer. The personalizer is a support vector machine
that learns to optimally combine the two neural networks
based on new user samples.
3.1. Finding Writing Styles using Clustering

Hierarchical clustering techniques can be used to
learn letter handwriting styles from data. Two main
approaches exist: (a) a top down approach of detecting
sub-styles [5-6], and (b) a bottom-up clustering approach
[7-8]. In this paper, the bottom-up approach is adopted
because the obtained style knowledge can be directly
used in the recognizer.

A clustering C of handwritten letters X = {x1, x2, …,
xM} defines a partitioning of the data into a set {c1, c2,

…, cK} of K disjoint sets, such that
1

K k

k
c

=U = X. The

clustering C is computed independently for every letter.
An hierarchical clustering algorithm produces an
hierarchy of nested clusters [C1, C2, …, CM] such that
Cm−1 is a subset of Cm. This hierarchy is built in M steps,
where a clustering at step m is produced from the
clustering produced at step m−1. At step 1, every
member in the sample set X represents a cluster of its
own. Using a dissimilarity function D(ck,ck’) of two
clusters, the following algorithm is applied:
a) Initialize C1 = {{x1},{x2},…,{xM}}, where each

sample is a cluster by itself.
b) For m = 2, …., M: obtain the new clustering Cm by

merging the two most similar clusters ckmin and ck’min
of Cm−1. The closest clusters are defined by

(kmin, k′min) = arg min(k, k′),k≠k′ D(ck,ck′)

3.1.1. Cluster and Sample Dissimilarity Function

The cluster dissimilarity function D(ck,ck′) is defined
in terms of the ink sample dissimilarity function
D(xk,xk′). Each ink sample is first isotropically
normalized and centered within a fixed size rectangle.
For ink samples k (comprising, say, S strokes), and k′
(comprising, say, S′ strokes),

()
1

, ,

 , if

, if
k k N

nn n
D x x P P

S

S S

S S
′

=
= ′

′∞ ≠⎧
⎪
⎨

′=⎪
⎩
∑ (1)

where P and P′ are the corresponding re-sampled
coordinate vectors of samples k and k′, respectively, and
N is the number of sampling points. An element p in the

vector P has 3 co-ordinates (x, y, θ) where x, y are the
Cartesian coordinates of the point p and θ is the estimate
of the slope at the same point.

() (),
, max ,k k k k

k k k k

x c x c
D c c D x x′ ′

′ ′

∀ ∈ ∀ ∈
= (2)

The decision to use the maximum rather than average or
the minimum to define the distance between ink samples
favors compact clusters. Since distance between clusters
with different stroke lengths is ∞, they will not be
merged until the very end. At that point the merging
would have actually stopped.

3.1.2. Number of Clusters

A key problem in clustering algorithms in general is
the determination of the number of clusters. In our
experiments we determined the number of clusters for
every letter by defining a threshold Dmax above which no
further merging of clusters occurs. This means that the
active clusters at the time that merging stops represent
the styles of the corresponding letter. Accordingly, the
number of resulting styles is different from one letter to
the other, depending on how diverse the letter shapes
are.

3.1.3. Clustering Results

The hierarchical clustering algorithm described
previously was applied to a large set of ink samples (see
Section 4.1). Figure 1 shows example styles for the
letters q, t, and X and their relative frequencies among
writers.

1.6%

Modern
5.4%
N/A

4.0%
Simple
Cursive

39.0%
Modern
Cursive

19.8%
N/A

30.1%
Italic

Cursive

1.1%
N/A

5.9%
Modern

5.4%
Simple

41.6%
Italic

43.6%
Manu-
script

3.7%
Modern
Cursive

1.0%
Simple

4.0%
Simple

1.3%
Simple

7.1%
Modern
Cursive

49.5%
Simple

36.8%
Simple

Figure 1. Styles and distributions for q, t and X.

3.1.4. Selecting Allographs

Each choice of a DTW distance threshold when applied
to the hierarchical cluster produces a set of disjoint
clusters. The larger the distance threshold, the fewer the
number of clusters obtained. For the experiments
reported in this paper, a threshold was chosen to obtain
2002 unique clusters for the 100 characters (printable
ASCII characters including the euro and pound signs).
With 2002 clusters and 100 characters, there are
approximately 20 allographs per character representing
various written forms of the character.

3.2. Feature Vectors

Each handwritten character may be viewed as a
sequence of (x,y,t) segments representing continuous
strokes. One or more strokes written in succession make
up a character. Each handwritten character was
processed to obtain sixty five polynomial features using
the approach in Rowley et al [10].

3.3. Training Base and Allograph Classifiers
Two recognizers are trained using these feature

vectors. The first recognizer (allograph-NN) is shown in
Figure 2 and comprises a neural network and a linear
classifier in a cascade.

Figure 2. The allograph classifier.

The neural network has 2002 outputs and is trained
to map the character feature vector to character
allographs. A linear combiner (allograph-folder) is
trained using gradient descent to fold the 2002
allographs back into the 100 character classes. The linear
folder is considered to be a part of the allograph-NN.
The second recognizer (shown in Figure 3) is a neural
network (base-NN) that does not use allograph
information and is trained to directly map the feature
vectors to the output classes. Both neural networks are
multi-layer-perceptrons (MLP) with two layers each.
While the allograph-NN has 1024 hidden nodes, the
base-NN has 600 hidden nodes. Backpropagation was
used to train the neural networks with cross-entropy as
the error function [9].

Figure 3. The base classifier.

3.4. Combiner for improved accuracy
The two neural networks (allograph-NN and base-

NN) have different architectures. Further, the former is
trained using allograph information, while the latter is
not. Due to these differences, the errors made by these
two classifiers can be expected to be significantly
different. Any combiner built using these two classifiers
will likely have a lower error rate than either of them. A
simple linear classifier that combines the outputs of the
allograph-NN and the base-NN comprises the writer-
independent (unpersonalized) recognizer.

3.5. Personalizer
The personalizer’s role is to adapt the writer-

independent recognizer to the current user providing
new training samples. It is designed to replace the linear
combiner in the unpersonalized recognizer with one that
is optimal for the new user. The basic personalizer
architecture is shown in Figure 4.

Figure 4. The unpersonalized recognizer and
Personalizer are arranged in a cascade.

Any suitable combiner classifier that can learn from
data can be used to replace the linear combiner. In this
work, support vector machines (SVMs) were chosen for
the following reasons:
1. Generalization: SVMs are well known for their

generalization properties. Since, the number of
samples collected (per class) from the user will be
very small (typically less than 10 or 15), it is very
important that generalization is achieved with such
few samples. In contrast to SVMs, training neural
networks to generalize well with very limited training
data is a challenging problem.

2. Regularization: The most common approach to
achieving good generalization with small data sets is
regularization. SVMs provide a natural way of
regularization. The model selection process can be
used to effectively control capacity and limit over-
fitting.

3. Multi-class: Multi-class SVMs can built using several
two-class SVMs. This allows for finer control on
accuracy on a per class basis. Since only the linear
combiner is being personalized, not all two-class
SVMs are necessary. One can simply focus on
including only those pairs of classes that have the
highest confusion.

4. Complexity: When the one-vs-one approach is used
the number of two class classifiers grows
proportional to C(n,2) i.e., O(n2). This can be a
problem with a large number of classes. However,
the support vectors in an SVM are a subset of user
provided samples. Thus, even though the number of
possible classes and classifiers grows quickly, the
total number of support vectors is bounded by the
number of user samples, which is small. Further,
since only the combiner is being personalized, only a
small subset of the C(n,2) classifiers need to be built.
Each of the dropped classifiers can be represented by

a single bit indicating that the unpersonalized
recognizer’s output is to be used instead1.

4. Experiments

4.1. Datasets
Two data sets were used in the personalization

experiments:
1. The first set (non-personalization set) consisted of

200,000 handwritten characters from 215 users.
This data is used for the generic recognizer.

2. The second set (personalization set) consisted of
84,000 samples from 21 new users and is designed
for evaluating the personalization process.

Data in both sets was uniformly distributed over 100
possible western handwritten character classes given by:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
!"#$%&'()*+,-
./:;<=>?@[\]^_{|}~¢£¥§°±€

The 200,000 ink samples from the non-
personalization set were hierarchically clustered to
obtain 2002 allographs. These clusters were used to
assign allograph labels for each of the 200,000 samples.

4.2. Generic Recognizer
The generic recognizer comprises two classifiers: a)

the allograph-NN (which also contains the allograph-
folder), and b) the base-NN. The non-personalization set
was shuffled and split into 3 parts: 160,000 samples to
be used for training, 20,000 samples to be used for
validation (to determine when to stop training), and the
remaining 20,000 samples to be used for testing. The
reported accuracies for the generic recognizer on the
non-personalization data set are the ones from the
20,000 test set. In each of the figures, the first
percentage value indicated on a classifier is the error rate
on this test set.

The allograph-NN is a two layered multi-layer
perceptron (tanh nonlinearity) with 1024 nodes in the
hidden layer and 2002 output nodes (one per allograph).
The allograph-folder is a simple linear combiner that
maps the allograph-NN outputs to the 100 output
classes. The base-NN is also a two layered multi-layer
perceptron (tanh nonlinearity) with 600 hidden nodes
and 100 outputs (one per output class).

All classifiers (allograph-NN, allograph-folder, and
base-NN) were independently trained on the non-
personalization set using backpropagation and cross-
entropy as the error measure. The generic combiner is a
simple linear classifier with 2202 inputs and 100
outputs. Its inputs comprised all of the outputs of the
allograph-NN, the allograph-folder and the base-NN.

1 For dropped pairs, during the SVM voting step, the
corresponding pair of unpersonalized combiner’s outputs
can be compared to obtain the vote.

4.3. Personalizer
The personalizer is a 100-class SVM using up to

C(100,2) = 4950 2-class SVMs. A unique personalizer is
trained for each of the 21 users.

The 84,000 samples in the personalization data set
produce 40 samples per character for each of the 21
users. Up to 15 samples per character are used to train
the personalizer. The remaining 25 samples per character
are used purely for testing. We do not expect real users
to provide more than 15 samples per character for
personalization. However, having a large test set (25 or
more samples per char) gives us a reliable way of
evaluating the personalized recognizer.

Three different personalizers were built for each
user, utilizing k = 5, 10, and 15 user samples (per class).
These k-sample sets were incrementally selected, i.e., for
example the k = 10 set was obtained by adding five new
sample to the k = 5 set. The k samples were used to not
only train the recognizer, but also regularize it. ceil(k/2)
samples were used for training and floor(k/2) samples
were used for model selection. The RBF kernel was
used. SVM model selection was performed using a
simple grid-search [11] with C in {2-5, 2-4,…, 214, 215}
and γ in {2-10, 2-9,…, 23, 24}. The (C,γ) parameters from
the model that gave the best error rate on the floor(k/2)
samples (not used for training the SVM) was chosen for
the personalizer. This error rate is reported as the error
rate of the personalized recognizer.

5. Results

5.1. Base Recognizer
The base-NN (shown in Figure 3) achieved a test

error rate of 7.8%. When tested on data from the 21
users in the personalized dataset (not included in the 215
users), the error rate increased to 9.36%. This is a
relative increase of 20% in the error rate. Such a large
increase in the error rate clearly indicates that the inter-
user variation is much smaller than the intra-user
variation in handwriting styles.

5.2. Allograph Recognizer
The allograph classifier (Figure 2) attempts to predict

not only the character label but also the writing style of
the character. On the non-personalized dataset, the
allograph classifier gets an error rate of 24.65%. The
error rate is very large.

However, when we simply fold the 2002 character
styles into their associated 100 character classes (simple
folder), the error rate drops to 8.25%. For any given
character, the simple folder returns the sum of the
allograph outputs corresponding to that character.

A better folder can account for confusable allographs
among different classes. When a simple linear folder
(learned weighted sum over all 2002 outputs) is used the
unpersonalized test error rate drops to 5.9%. However,
the error rate on the personalization test set dramatically

increases to 11.40%. This increase in error rate (93%) is
larger than that observed for the base recognizer (20%),
indicating that the allograph distribution varies
significantly between the 215 users in the non-
personalization data set and the 21 users in the
personalization data set. However, previous work [3] has
shown that even though the allograph distribution varies,
for any new user the probability distribution over the
classifier outputs is similar over several samples. In
other words, though the error rate increases, the new
user errors are predictable. Thus, the personalizer can
learn to reduce these errors.

5.3. Generic Recognizer
The unpersonalized combiner (shown in Figure 5) is

a linear classifier that takes as input the 2002 outputs of
the allograph classifier, the 100 outputs of the allograph
folder, and the 100 outputs from the base classifier. It
maps these inputs to the 100 output classes. The
unpersonalized combiner achieves a test error rate of
5.8% on the non-personalized data set and a
corresponding 9.51% test error rate on the personalized
data set. The performance slightly improves.

Figure 5. Unpersonalized Recognizer.

5.4. Personalized Recognizers
A unique personalized recognizer (Figure 6) was

built for each of the 21 users in the personalized data
sets. The personalizer reduces the mean error rate from
9.51% to 5.64%. This relative reduction in error rate of
over 40.6% clear indicates that the personalizer is
effective in tuning the recognizer to each of the
individual users. Table 1 presents a summary of the
performance before and after personalization. Figures 7
and 8 present the error rates for each of the users before
and after personalization using 15 samples. The
personalizer reduced the error rate for 20 of the 21 users.
However, on one user (user 12 in Figure 7), the number
of errors increased slightly by 3.7% (relative increase).

The training time for each personalizer was less than
300 seconds (5 minutes). Each pair-wise SVM classifier
(taking 8 samples for the first class and 8 samples for the
second class) takes about 0.27 milliseconds to train on a
Pentium 3.0 GHz machine. Training all 4950 pair-wise
classifiers take only 1.33 seconds. However, this has to
be repeated for each of the 255 (C,γ) settings for model
selection using grid search. Using more advanced model

selection methods [12] can reduce this by one or two
orders of magnitude. Further reduction in training times
can be achieved by building only those pair-wise
classifiers that correspond to the largest values in the
confusion matrix. Class pairs that have no confusion can
be dropped. With all unpersonalized error rates under
15%, for the 100 class problem used in this paper, this
simple approach has the potential to produce speed
improvements of over 6 times. Further, such an approach
may be the only way to build the personalizer when the
number of classes is very large. For example, East-Asian
languages (Chinese, Japanese and Korean) typically
have several thousand characters. User may be expected
to provide a few samples only for the most
misrecognized characters.

Figure 6. Personalizer architecture: The
personalizer reduces the error rate from 9.51% to
5.64% using 15 samples (per character).

1 3 5 7 9 11 13 15 17 19 21
0

5

10

15

Sorted User

P
er

ce
nt

 E
rro

r Before
After

Figure 7. Percentage error before and after
personalization for the 21 users.

1 3 5 7 9 11 13 15 17 19 21
0

20

40

60

Sorted User

E
rr

or
 Im

pr
ov

em
en

t (
%

)

Mean = 40.6%

Figure 8. Percent improvement in error rate. The
users were sorted based on their improvement.
While 20 users benefited from personalization and
one user’s error rate slightly increased after
personalization.

Table 1. Accuracy of different recognizers.

Test Error
Classifier Generic

data set
Personalization

data set
Base-NN 7.80% 9.58%

Allograph-NN
(Simple Folder) 8.25% -

Allograph-NN
(Linear Folder) 5.90% 11.40%

Generic (Fig. 5) 5.80% 9.51%
Personalized (Fig. 6) - 5.68%

5.5. Effect of the number of user samples
During personalization, the greater the number of

samples required from the user, the lower the
personalized error rate, but greater the user discomfort.
The rate of improvement is expected to diminish with
increasing number of samples. Personalization
experiments were repeated with 5, 10, and 15 samples
(per character) from each user. Figure 9 shows the
personalized error rate as a function of the number of
user samples.

0 5 10 15

2

4

6

8

10

12

14

16

Number of samples

Pe
rs

on
al

iz
ed

 e
rr

or
 ra

te

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Figure 9. The personalized error percentage as a
function of the number of samples provided by the
user. Users were sorted based on their
unpersonalized error rate (zero samples). The thick
line shows the mean percent error after
personalization and the dashed lines show one
standard deviation bounds.

The personalized error rate was 7.37%, 6.06%, and
5.64%, with 5, 10, and 15 samples from the user. These
values correspond to a relative reduction of 23%, 36%,
and 41%, respectively. The drop in error rate is the
highest in the first five samples. The error rate continues
to decrease even after 15 samples. However, given the
rate of improvement, it appears that collecting more than
10 or 15 samples from the user may not warrant the
subsequent reduction in the error rate. One approach to
expanding the number of training samples is through the
judicious use of ink based distortions. We plan to
explore the use of such distortions in future work.

6. Conclusion
We presented a clustering approach for identifying

allographs and a novel personalizable recognizer that
utilizes allograph information. The personalizer is a
support vector machine that acts as a combiner and tunes
itself to reduce recognizer errors for a particular user.
Experimental results on 21 users clearly indicate that the
new approach reduces handwritten single character
recognition errors by over 24% (or 41%) using as few as
5 (or 15) samples. The personalizer takes less than a few
minutes to train and the pair-wise SVM model allows the
personalizer to scale to a large number of classes. Future
work involves the use of sparse multi-class SVMs for
scaling to large classes and ink distortion for reducing
the number of user samples needed for personalization.

7. References
[1] SN Srihari, SH Cha, H Arora, and S Lee, “Individuality of

handwriting,” Journal of Forensic Sciences, 47(4), pp.
856 - 872 July, 2002.

[2] N Matic, I Guyon, J Denker, and V Vapnik (1993),
“Writer-adaptation for on-line handwritten character
recognition,” ICDAR’93, pp. 187-191.

[3] JC Platt and Nada Matic (1996), “A constructive RBF
network for writer adaptation,” NIPS’96, pp.765-771.

[4] SD Connell and AK Jain (2002), “Writer adaptation for
online handwriting recognition,” IEEE PAMI, vol. 24, no.
3, pp. 329-346.

[5] L Vuurpijl, L Schomaker (1996), “Coarse writing-style
clustering based on simple stroke-related features,” in
Proc. of 5th IWFHR, pp. 29-34.

[6] C Bahlmann, H Burkhardt (2003), “The writer
independent online handwriting recognition system frog
on hand and cluster generative statistical dynamic time
warping”. IEEE PAMI, v. 26, No. 3, pp. 299-310.

[7] J-P Crettez (1995), “A set of handwriting families: style
recognition”. ICDAR’95, pp. 489-494.

[8] L Vuurpijl, L Schomaker (1997), “Finding structure in
diversity: a hierarchical clustering method for the
categorization of allographs in handwriting,” ICDAR’97,
pp. 387-393.

[9] C. Bishop (1996), Neural Networks for Pattern
Recognition, Oxford University Press.

[10] HA Rowley, M Goyal, J Bennett, “The effect of large
training set sizes on online Japanese Kanji and English
cursive recognizers,” IWFHR’02, pp. 36-40.

[11] N Cristianini, J Shawe-Taylor (2000), An Introduction to
Support Vector Machines, Cambridge Press.

[12] T Hastie, S Rosset, R Tibshirani, J Zhu (2004), “The
Entire Regularization Path for the Support Vector
Machine,” Journal of Machine Learning Research 5, pp.
1391–1415.

