Comparison of Two Different Feature Sets for Offline Recognition of Handwritten Arabic Words

Abstract : Normalization is a very important step in automatic cursive handwritten word recognition. Based on an offline recognition system for Arabic handwritten words which uses a semi-continuous 1-dimensional HMM recognizer two different feature sets are presented. The dependencies of the feature sets from normalization steps is discussed and their performances are compared using the IFN/ENIT - database of handwritten Arabic words. As the lower and upper baseline of each word are part of the ground truth (GT) of the database, the dependency of the feature set from the accuracy of the estimated baseline is evaluated.
Type de document :
Communication dans un congrès
Guy Lorette. Tenth International Workshop on Frontiers in Handwriting Recognition, Oct 2006, La Baule (France), Suvisoft, 2006
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00112643
Contributeur : Anne Jaigu <>
Soumis le : jeudi 9 novembre 2006 - 14:15:22
Dernière modification le : jeudi 9 novembre 2006 - 16:47:10
Document(s) archivé(s) le : mardi 6 avril 2010 - 22:00:12

Identifiants

  • HAL Id : inria-00112643, version 1

Collections

Citation

Mario Pechwitz, Volker Maergner, Haikal El Abed. Comparison of Two Different Feature Sets for Offline Recognition of Handwritten Arabic Words. Guy Lorette. Tenth International Workshop on Frontiers in Handwriting Recognition, Oct 2006, La Baule (France), Suvisoft, 2006. 〈inria-00112643〉

Partager

Métriques

Consultations de la notice

251

Téléchargements de fichiers

316