
HAL Id: inria-00113758
https://inria.hal.science/inria-00113758

Submitted on 14 Nov 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Low-Footprint Java-to-Native Compilation Scheme
Using Formal Methods

Alexandre Courbot, Mariela Pavlova, Gilles Grimaud, Jean-Jacques
Vandewalle

To cite this version:
Alexandre Courbot, Mariela Pavlova, Gilles Grimaud, Jean-Jacques Vandewalle. A Low-Footprint
Java-to-Native Compilation Scheme Using Formal Methods. In Seventh Smart Card Research and
Advanced Application IFIP Conference (CARDIS’06), Apr 2006, Tarragona, Spain. �inria-00113758�

https://inria.hal.science/inria-00113758
https://hal.archives-ouvertes.fr

A Low-Footprint Java-to-Native Compilation
Scheme Using Formal Methods

Alexandre Courbot1, Mariela Pavlova2, Gilles Grimaud1, and Jean-JacquesVandewalle3
1 IRCICA/LIFL, Univ. Lille 1, France, INRIA futurs, POPS Research GroupfAlexandre.Courbot, Gilles.Grimaudg@lifl.fr2 INRIA Sophia-Antipolis, France, Everest Research GroupMariela.Pavlova@sophia.inria.fr3 Gemplus Systems Research Labs, La Ciotat, FranceJean-Jacques.Vandewalle@research.gemplus.com

Abstract. Ahead-of-Time and Just-in-Time compilation are commonways to improve runtime performances of restrained systems like JavaCard by turning critical Java methods into native code. However, nativecode is much bigger than Java bytecode, which severely limits or evenforbids these practices for devices with memory constraints.In this paper, we describe and evaluate a method for reducing natively-compiled code by suppressing runtime exception check sites, which areemitted when compiling bytecodes that may potentially throw runtimeexceptions. This is made possible by completing the Java program withJML annotations, and using a theorem prover in order to formally provethat the compiled methods never throw runtime exceptions. Runtimeexception check sites can then safely be removed from the generatednative code, as it is proved they will never be entered.We have experimented our approach on several card-range and embeddedJava applications, and were able to remove almost all the exception checksites. Results show memory footprints for native code that are up to 70%smaller than the non-optimized version, and sometimes as low than 115%the size of the Java bytecode when compiled for ARM thumb.
1 Introduction
Enabling Java on embedded and restrained systems is an important challengefor today's industry and research groups [1]. Java brings features like executionsafety and low-footprint program code that make this technology appealing forembedded devices which have obvious memory restrictions, as the success of JavaCard witnesses. However, the memory footprint and safety features of Java comeat the price of a slower program execution, which can be a problem when the hostdevice already has a limited processing power. As of today, the interest of Javafor smart cards is still growing, with next generation operating systems for smartcards that are closer to standard Java systems [2, 3], but runtime performance instill an issue. To improve the runtime performance of Java systems, a commonpractice is to translate some parts of the program bytecode into native code.

Doing so removes the interpretation layer and improves the execution speed,but also greatly increases the memory footprint of the program: it is expectedthat native code is about three to four times the size of its Java counterpart,depending on the target architecture. This is explained by the less-compact formof native instructions, but also by the fact that many safety-checks that areimplemented by the virtual machine must be reproduced in the native code. Forinstance, before dereferencing a pointer, the virtual machine checks whether it isnull and, if it is, throws a NullPointerException. Every time a bytecode thatimplements such safety behaviors is compiled into native code, these behaviorsmust be reproduced as well, leading to an explosion of the code size. Indeed, alarge part of the Java bytecode implement these safety mechanisms.Although the runtime checks are necessary to the safety of the Java virtualmachine, they are most of the time used as a protection mechanism against pro-gramming errors or malicious code: A runtime exception should be the result ofan exceptional, unexpected program behavior and is rarely thrown when exe-cuting sane code - doing so is considered poor programming practice. The safetychecks are therefore without e�ect most of the time, and, in the case of nativecode, uselessly bloat the code.Several studies proposed to factorize these checks or in some case to elim-inate them, but none proposed a complete elimination without hazarding thesystem security. In this paper, we use formal proofs to ensure that run-timechecks can never be true into a program, which allows us to completely andsafely eliminate them from the generated native code. The programs to optimizeare JML-annotated against runtime exceptions and veri�ed by the Java AppletCorrectness Kit (JACK [4]). We have been able to remove almost all of the run-time checks on tested programs, and obtained native ARM thumb code whichsize was comparable to the original bytecode.The remainder of this paper is organized as follows. In section 2, we overviewthe methods used for compiling Java bytecode into native code, and evaluate theprevious work aiming at optimizing runtime exceptions in the native code. Then,section 3 describes our method for removing runtime exceptions on the basis offormal proofs. We experimentally evaluate this method in section 4, discuss itslimitations in 5 and conclude in 6.
2 Java and Ahead-of-Time Compilation
Compiling Java into native code is a common practice in the embedded domain.This section gives an overview of the di�erent compilation techniques of Javaprograms, and points out the issue of runtime exceptions. We are then lookingat how existing solutions address this issue.
2.1 Ahead-of-Time & Just-in-Time Compilation
Ahead-of-Time (AOT) compilation is a common way to improve the e�ciencyof Java programs. It is related to Just-in-Time (JIT) compilation by the fact

that both processes take Java bytecode as input and produce native code thatthe architecture running the virtual machine can directly execute. AOT and JITcompilation di�er by the time at which the compilation occurs. JIT compila-tion is done, as its name states, just-in-time by the virtual machine, and musttherefore be performed within a short period of time which leaves little roomfor optimizations. The output of JIT compilation is machine-language. On thecontrary, AOT compilation compiles the Java bytecode way before the programis run, and links the native code with the virtual machine. In other words, ittranslates non-native methods into native methods (usually C code) prior tothe whole system execution. AOT compilers either compile the Java programentirely, resulting in a 100% native program without a Java interpreter, or canjust compile a few important methods. In the latter case, the native code isusually linked with the virtual machine. AOT compilation has no or few timeconstraints, and can generate optimized code. Moreover, the generated code cantake advantage of the C compiler's own optimizations.JIT compilation in interesting by several points. For instance, there is noprior choice about which methods must be compiled: the virtual machine com-piles a method when it appears that doing so is bene�cial, e.g. because themethod is called often. However, JIT compilation requires embedding a com-piler within the virtual machine, which needs resources to work and writablememory to store the compiled methods. Moreover, the compiled methods arepresent twice in memory: once in bytecode form, and another time in compiledform. While this scheme is e�cient for decently-powerful embedded devices suchas PDAs, it is inapplicable to very restrained devices like smartcards or sensors.For them, ahead-of-time compilation is usually preferred because it does notrequire a particular support from the embedded virtual machine outside of theability to run native methods, and avoids method duplication. AOT compilationhas some constraints, too: the compiled methods must be known in advance, anddynamically-loading new native methods is forbidden, or at least very unsafe.Both JIT and AOT compilers must produce code that exactly mimics thebehavior of the Java virtual machine. In particular, the safety checks performedon some bytecodes must also be performed in the generated code.

2.2 Java Runtime Exceptions
The JVM (Java Virtual Machine) [5] speci�es a safe execution environment forJava programs. Contrary to native execution, which does not automatically con-trol the safety of the program's operations, the Java virtual machine ensures thatevery instruction operates safely. The Java environment may throw prede�nedruntime exceptions at runtime, like the following ones:
NullPointerException This exception is thrown when the program tries todereference a null pointer. Among the instructions that may throw this

exceptions are: getfield, putfield, invokevirtual, invokespecial, andthe set of type astore instructions4.ArrayIndexOutOfBoundsException If an array is accessed out of its bounds,this exception is thrown to prevent the program from accessing an illegalmemory location. According to the Java Virtual Machine speci�cation, theinstructions of the family type astore and type aload may throw such anexception.ArithmeticException This exception is thrown when exceptional arithmeticconditions are met. Actually, there is only one such case that may occurduring runtime, namely the division of an integer by zero, which may bedone by idiv, irem, ldiv and lrem.NegativeArraySizeException Thrown when trying to allocate an array of neg-ative size. newarray, anewarray and multianewarray may throw this ex-ception.ArrayStoreException Thrown when an object is attempted to be stored intoan array of incompatible type. This exception may be thrown by the aastoreinstruction.ClassCastException Thrown when attempting to cast an object to an incom-patible type. The checkcast instruction may throw this exception.IllegalMonitorStateException Thrown when the current thread is not theowner of a released monitor, typically by monitorexit.
If the JVM detects that executing the next instruction would result in an in-consistency or an illegal memory access, it throws a runtime exception, that maybe caught by the current method or by other methods on the current stack. Ifthe exception is not caught, the virtual machine exits. This safe execution modeimplies that many checks are made during runtime to detect potential incon-sistencies. For instance, the aastore bytecode, which stores an object referenceinto an array, may throw three di�erent exceptions: NullPointerException,ArrayIndexOutOfBoundsException, and ArrayStoreException.Of the 202 bytecodes de�ned by the Java virtual machine speci�cation, wenoticed that 43 require at least one runtime exception check before being exe-cuted. While these checks are implicitly performed by the bytecode interpreterin the case of interpreted code, they must explicitly be issued every time sucha bytecode is compiled into native code, which leads to a code size explosion.Ishizaki et al. measured that bytecodes requiring runtime checks are frequent inJava programs: for instance, the natively-compiled version of the SPECjvm98compress benchmark has 2964 exception check sites for a size of 23598 bytes. Asfor the mpegaudio benchmark, it weights 38204 bytes and includes 6838 excep-tion sites [6]. The exception check sites therefore make a non-neglectable part ofthe compiled code.Figure 1 shows an example of Java bytecode that requires a runtime checkto be issued when being compiled into native code.

4 the JVM instructions are parametrized, thus we denote by type astore the set ofarray store instructions, which includes iastore, sastore, lastore, ...

Java version:
iload iiload jidivireturn

C version:
1 int i, j;2 if (j == 0)3 THROW(ArithmeticException);4 RETURN_INT(i / j);

Fig. 1. A Java bytecode program and its (simpli�ed) C-compiled version. The behaviorof the division operator in Java must be entirely reproduced by the C program, whichleads to the generation of a runtime exception check site
It is, however, possible to eliminate these checks from the native code if theexecution context of the bytecode shows that the exceptional case never happens.In the program of �gure 1, the lines 2 and 3 could have been omitted if we weresure that for all possible program paths, j can never be equal to zero at thispoint. This allows to generate less code and thus to save memory. Removingexception check sites is a topic that has largely been studied in the domain ofJIT and AOT compilation.

2.3 Related Work
Toba [7] is a Java-to-C compiler that transforms a whole Java program into a na-tive one. Harissa [8] is a Java environment that includes a Java-to-C compiler aswell as a virtual machine, and therefore supports mixed execution. While bothenvironments implement some optimizations, they are not able to detect andremove unused runtime checks during ahead-of-time compilation. The \Java?C!" (JC5) Virtual Machine [9] is a Java virtual machine implementation thatconverts class �les into C code using the Soot [10] framework, and runs theircompiled version. It supports redundant exceptions checks removal, and is tunedfor runtime performance, by using operating system signals in order to detect ex-ceptional conditions like null pointer dereferencing. This allows to automaticallyremove most of the NullPointerException-related checks.In [11] and [12], Hummel et al. use a Java compiler that annotates bytecodeswith higher-level information known during compile-time in order to improvethe e�ciency of generated native code. [6] proposes methods for optimizing ex-ceptions handling in the case of JIT compiled native code. These works rely onknowledge that can be statically inferred either by the Java compiler or by theJIT compiler. In doing so, they manage to e�ciently factorize runtime checks,or in some cases to remove them. However, they are still limited to the contextof the compiled method, and do not take the whole program into account. In-deed, knowing properties about a the parameters of a method can help removingfurther checks.
5 In the remainder of this paper, the JC abbreviation is always used to refer to the\Java? C!" virtual machine, and never to JavaCard

We propose to go further than these approaches, by giving more precise di-rectives as to how the program behaves in the form of JML annotations. Theseannotations are then used to get formal behavioral proofs of the program, whichguarantee that runtime checks can safely be eliminated for ahead-of-time com-pilation.
3 Optimizing Ahead-of-Time Compiled Java Code
For verifying the bytecode that will be compiled into native code, we use theJACK veri�cation framework (short for Java Applet Correctness Kit). JACKis designed as a plugin for the Eclipse interface development environment. Itsupports both the Java Modeling Language (JML [13]) and the ByteCode Spec-i�cation Language (BCSL [14]), respectively at source and bytecode level, andalso supplies a compiler from JML to BCSL. The tool supports only the sequen-tial subset of the Java and Java bytecode languages, but this is su�cient for thepurpose of the present paper. Thus, from a Java program annotated with JML ora bytecode program annotated with BCSL, JACK generates proof obligations atthe source or bytecode level respectively. JACK can then translate the resultingveri�cation conditions for several theorem provers: Coq, Simplify, Atelier B.Verifying that a bytecode program does not throw Runtime exceptions usingJACK involves several stages:
1. Writing the JML speci�cation at the source level of the application, whichexpresses that no runtime exceptions are thrown.2. Compiling the Java sources and their JML speci�cation6.3. Generating the veri�cation conditions over the bytecode and its BCSL speci-�cation, and proving the veri�cation conditions. During the calculation pro-cess of the veri�cation conditions, they are indexed with the index of theinstruction in the bytecode array they refer to and the type of speci�cationthey prove (e.g. that the proof obligation refers to the exceptional postcondi-tion in case an exception of type Exc is thrown when executing the instruc-tion at index i in the array of bytecode instructions of a given method).Once the veri�cations are proved, information about which instructions canbe compiled without runtime checks is inserted in user de�ned attributes ofthe class �le.4. Using these class �le attributes in order to optimize the generated nativecode. When a bytecode that has one or more runtime checks in its semanticsis being compiled, the bytecode attribute is queried in order to make surethat the checks are necessary. If it indicates that the exceptional conditionhas been proved to never happen, then the runtime check is not generated.
Our approach bene�ts from the accurateness of the JML speci�cation andfrom the bytecode veri�cation condition generator. Performing the veri�cation6 the BCSL speci�cation is inserted in user de�ned attributes in the class �le and sodoes not violate the class �le format

over the bytecode allows to easily establish a relationship between the proof obli-gations generated over the bytecode and the bytecode instructions to optimize.In the rest of this section, we explain in detail all the stages of the optimiza-tion procedure.
3.1 JML Annotations
JML is a rich behavioral interface speci�cation language, similar to Java anddesigned for it, that follows the design by contract paradigm [15]. Among thefeatures that JML supports and which we use in this study are:
Method preconditions The method precondition states what must hold whenthe method is called, i.e. the precondition must hold at every method callsite.Method postconditions JML allows to specify both the exceptional and nor-mal terminations of a method. One can express which property should holdif a method terminates normally and which property should hold if a methodterminates by throwing an exception. The exceptional and normal postcon-ditions state what the method guarantees after its execution and are veri�edwhen establishing the correctness of the method implementation.Class invariants These properties must be established at every visible pro-gram state. In particular, the property must hold before and after everymethod call. The class invariant is not required to hold before calling theclass constructor, but must hold once the constructor returns.Loop invariants and loop frame conditions A loop invariant is a predicatethat must hold every time the corresponding loop entry is reached. The loopframe condition states which locations are modi�ed by the loop.
3.2 Methodology for Writing A Speci�cation Against RuntimeExceptions
We now illustrate with an example which annotations must be generated inorder to check if a method may throw an exception. Figure 27 shows a Javamethod annotated with a JML speci�cation. The method clear declared in classCode_Table receives an integer parameter size and assigns 0 to all the elementsin the array �eld tab whose indexes are smaller than the value of the parametersize. The speci�cation of the method guarantees that if every caller respectsthe method precondition and if every execution of the method guarantees itspostcondition then the method clear never throws an exception of type orsubtype java.lang.Exception8. This is expressed by the class and methodspeci�cation contracts. First, a class invariant is declared which states that oncean instance of type Code_Table is created, its array �eld tab is not null. Theclass invariant guarantees that no method will throw a NullPointerExceptionwhen dereferencing (directly or indirectly) tab.7 although the analysis that we describe is on bytecode level, for the sake of readability,the examples are also given on source level8 Note that every Java runtime exception is a subclass of java.lang.Exception

final class Code_Table {private/*@spec_public */short tab[];
//@invariant tab != null;
...
//@requires size <= tab.length;//@ensures true;//@exsures (Exception) false;public void clear(int size) {1 int code;2 //@loop_modifies code, tab[*];3 //@loop_invariant code <= size && code >= 0;4 for (code = 0; code < size; code++) {5 tab[code] = 0;}}}

Fig. 2. A JML-annotated method
The method precondition requires the size parameter to be smaller than thelength of tab. The normal postcondition, introduced by the keyword ensures,basically says that the method will always terminate normally, by declaringthat the set of �nal states in case of normal termination includes all the pos-sible �nal states, i.e. that the predicate true holds after the method's normalexecution9. On the other hand, the exceptional postcondition for the excep-tion java.lang.Exception says that the method will not throw any exceptionof type java.lang.Exception (which includes all runtime exceptions). This isdone by declaring that the set of �nal states in the exceptional termination caseis empty, i.e. the predicate false holds if an exception caused the termination ofthe method. The loop invariant says that the array accesses are between index0 and index size - 1 of the array tab, which guarantees that no loop iter-ation will cause an ArrayIndexOutOfBoundsException since the preconditionrequires that size <= tab.length.

3.3 Compiling JML annotations into BCSL speci�cations
Once the source code is completed by the JML speci�cation, the Java sourceis compiled using a normal non-optimizing Java compiler that generates debuginformation like LineNumberTable and LocalVariableTable, needed for compilingthe JML annotations. From the resulting class �le and the speci�ed source �le,9 Actually, after terminating execution the method guarantees that the �rst sizeelements of the array tab will be equal to 0, but as this information is not relevantto proving that the method will not throw runtime exceptions we omit it

the JML annotations are compiled into BCSL and inserted into user-de�nedattributes of the class �le. Figure 3 gives the bytecode version of the clearmethod shown earlier and its BSCL speci�cation. In the example, lv[0] standsfor the this instance and lv[1] stands for the �rst parameter that the methodreceives. A detailed description of the JML compiler can be found in [14].
//@invariant tab(lv[0]) != null;
...
//@requires lv[1] <= length(tab(lv[0]));//@ensures true;//@exsures (Exception) false;

method clear
0 iconst_01 istore_22 goto 155 aload_06 getfield tab9 iload_210 iconst_011 sastore12 iinc 2 by 115 iload_216 iload_117 if_icmplt 520 return

Fig. 3. The speci�ed bytecode of method clear

3.4 Generation of the Veri�cation Conditions
In order to generate the veri�cation conditions, we use a bytecode veri�cationcondition generator (vcGen) based on a bytecode weakest precondition calcu-lus [14]. The weakest precondition function wp returns, for every instructionins, normal postcondition , and exceptional function exc the weakest pred-icate wp(ins; ; exc) such that if it holds in the pre-state of the instructionins and if the instruction terminates normally, then the normal postcondition holds in the poststate and if ins terminates on an exception Exc, then thepredicate exc(Exc) holds. From the annotated bytecode the vcGen calculatesa set of veri�cation conditions for every method of the application. The veri�-cation conditions for a method are generated by tracing all the execution paths

in it starting at every return, athrow and loop end instruction up to reach-ing the method entry point. During the process of generation of the veri�cationconditions, for every instruction that may throw a runtime exception a newveri�cation condition is generated.In �gure 4, we show the weakest precondition rule for the getfield in-struction. As the virtual machine is stack-based, the rule mentions the stackstack and the stack counter cntr, thus the stack top element is referred asstack(cntr). If the top stack element stack(cntr) is not null, getfield popsstack(cntr) which is an object reference and pushes the value of the referenced�eld onto the operand stack in stack(cntr). If the stack top element is null, theJava Virtual Machine speci�cation says that the getfield instruction throws aNullPointerException.When the veri�cation condition generator works over a method, it labelsthe formula related to the exceptional termination of every instruction withthe index of the instruction in the bytecode array of the method. For example,if a getField instruction is met in the bytecode of a method, a conjunctionis generated and the conjunct related to the exception is labeled as shown by�gure 4. Finally, indexing the veri�cation conditions allows to identify later inthe proof phase which instructions can be optimized.Another important point is that the underlying vcGen is proved to be correct[14], thus our methodology also correctly performs optimizations.

wp(ind : getfield Cl.f; ; exc) =
�
stack(cntr) 6= null) [stack(cntr) Cl.f(stack(cntr))]
înd : stack(cntr) = null)
 exc(NullPointerException) [cntr 0][stack(0) refNullPointer]

�

Fig. 4. The weakest precondition rule for the putfield instruction

3.5 From Program Proofs to Program Optimizations
In this phase, the bytecode instructions that can safely be executed withoutruntime checks are identi�ed. Depending on the complexity of the veri�cationconditions, Jack can discharge them to the fully automatic prover Simplify, orto the Coq and AtelierB interactive theorem prover assistants.There are several conditions to be met for a bytecode instruction to be op-timized safely { the precondition of the method the instruction belongs to musthold every time the method is invoked, and the veri�cation condition relatedto the exceptional termination must also hold. In order to give a
avor of the

veri�cation conditions we deal with, �gure 5 shows part of the veri�cation con-dition related to the possible ArrayIndexOutOfBounds exceptional terminationof instruction 11 sastore in �gure 3, which is actually provable.

: : :length(tab(lv[0]) � lv[2]15 _ lv[2]15 < 0
l̂v[2]15 � 0
l̂v[2]15 < lv[1]
l̂v[1] � length(tab(lv[0]))

) false

Fig. 5. The veri�cation condition for the ArrayIndexOutOfBoundException check re-lated to the sastore instruction of �gure 3
Once identi�ed, proved instructions can be marked in user-de�ned attributesof the class �le so that the compiler can �nd them.

3.6 More Precise Optimizations
As we discussed earlier, in order to optimize an instruction in a method body,the method precondition must be established at every call site and the methodimplementation must be proved not to throw an exception under the assumptionthat the method precondition holds. This means that if there is one call site wherethe method precondition is broken then no instruction in the method body willbe optimized.Actually, the analysis may be less conservative and therefore more precise.We illustrate with an example how one can achieve more precise results.Consider the example of �gure 6. On the left side of the �gure, we show sourcecode for method setTo0 which sets the buff array element at index k to 0. On theright side, we show the bytecode of the same method. The iastore instructionat index 3 may throw two di�erent runtime exceptions: NullPointerException,or ArrayIndexOutOfBoundException. For the method execution to be safe (i.e.no runtime exception is thrown), the method requires some conditions to beful�lled by its callers. Thus, the method's precondition states that the buff ar-ray parameter must not be null and that the k parameter must be inside thebounds of buff. If at all call sites we can establish that the buff parameter isalways di�erent from null, but there are sites at which an unsafe parameter kis passed, the optimization for NullPointerException is still safe although theoptimization for ArrayIndexOutOfBoundException is not possible. In order toobtain this kind of preciseness, a solution is to classify the preconditions of amethod with respect to what kind of runtime exception they protect the codefrom. For our example, this classi�cation consists of two groups of preconditions.

The �rst is related to NullPointerException, i.e. buff != null and the sec-ond consists of preconditions related to ArrayIndexOutOfBoundException, i.e.k >= 0 && k <= buff.length. Thus, if the preconditions of one group are es-tablished at all call sites, the optimizations concerning the respective exceptioncan be performed even if the preconditions concerning other exceptions are notsatis�ed.
...
//@requires buff != null;//@requires k >= 0 ;//@requires k <= buff.length;//@ensures true;//@exsures (Exception) false;public void setTo0(int k,int[] buff){ buff[k] = 0;}

0 aload_21 iload_12 iconst_03 iastore4 return

Fig. 6. The source code and bytecode of a method that may throw several exceptions

4 Experimental Results
This section presents an application and evaluation of our method on variousJava programs.
4.1 Methodology
We have measured the e�ciency of our method on two kinds of programs, thatimplement features commonly met in restrained and embedded devices. cryptand banking are two smartcard-range applications. crypt is a cryptographybenchmark from the Java Grande benchmarks suite, and banking is a little bank-ing application with full JML annotations used in [4]. scheduler and tcpip aretwo embeddable system components written in Java, which are actually used inthe JITS [16] platform. scheduler implements a threads scheduling mechanism,where scheduling policies are Java classes. tcpip is a TCP/IP stack entirelywritten in Java, that implements the TCP, UDP, IP, SLIP and ICMP protocols.These two components are written with low-footprint in mind ; however, theoverall system performance would greatly bene�t from having them available innative form, provided the memory footprint cost is not too important.For every program, we have followed the methodology described in section3 in order to prove that runtime exceptions are not thrown in these programs.We look at both the number of runtime exception check sites that we are ableto remove from the native code, and the impact on the memory footprint of the

natively-compiled methods with respect to the unoptimized native version andthe original bytecode. The memory footprint measurements were obtained bycompiling the C source �le generated by the JITS ahead-of-time (AOT) compilerusing GCC 4.0.0 with optimization option -Os, for the ARM platform in thumbmode. The native methods sizes are obtained by inspecting the .o �le with nm,and getting the size for the symbol corresponding to the native method.Regarding the number of eliminated exception check sites, we also compareour results with the ones obtained using the JCk virtual machine mentionedin 2.3, version 1.4.6. The results were obtained by running the jcgen program onthe benchmark classes, and counting the number of explicit exception check sitesin the generated C code. We are not comparing the memory footprints obtainedwith the JITS and JC AOT compilers, for this result would not be relevant.Indeed, JC and JITS have very di�erent ways to generate native code. JITStargets low memory footprint, and JC runtime performance. As a consequence,a runtime exception check site in JC is heavier than one in JITS, which wouldfalsify the experiments. Su�ces to say that our approach could be applied onany AOT compiler, and that the most relevant measurement is the number ofruntime exception check sites that remains in the �nal binary - our measurementson the native code memory footprint are just here to evaluate the size impact ofexception check sites.
4.2 Results
Table 1 shows the results obtained on the four tested programs. The three �rstcolumns indicate the number of check sites present in the bytecode, the numberof explicit check sites emitted by JC, and the number of check sites that we wereunable to prove useless and that must be present in our optimized AOT code.The last columns give the memory footprints of the bytecode, unoptimized nativecode, and native code from which all proved exception check sites are removed.
Table 1. Number of exception check sites and memory footprints when compiled forARM thumb
Program # of exception check sites Memory footprint (bytes)Bytecode JC Proven AOT Bytecode Naive AOT Proven AOTcrypt 190 79 1 1256 5330 1592banking 170 12 0 2320 5634 3582scheduler 215 25 0 2208 5416 2504tcpip 1893 288 0 15497 41540 18064

On all the tested programs, we were able to prove that all but one exceptioncheck site could be removed. The only site that we were unable to prove fromcrypt is linked to a division, which divisor is a computed value that we wereunable to prove not equal to zero. JC has to retain 16% of all the exception

check sites, with a particular mention for crypt, which is mainly made of arrayaccessed and has more remaining check sites.The memory footprints obtained clearly show the heavy overhead induced byexception check sites. Despite of the fact that the exception throwing conventionhas deliberately been simpli�ed for our experiments, optimized native code is lessthan half the size of the non-optimized native code. The native code of crypt,which heavily uses arrays, is actually made of exception checking code at 70%.Comparing the size of the optimized native versions with the bytecode revealsthat proved native code is just slightly bigger than bytecode. The native code ofcrypt is 27% bigger than its bytecode version. Native scheduler only weights13.5% more that its bytecode, tcpip 16.5%, while banking is 54% heavier. Thislast result is explained by the fact that, being an application and not a systemcomponant, banking includes many native-to-java method invocations for callingsystem services. The native-to-java calling convention is costly in JITS, whicharti�cially increases the result.Finally, table 2 details the human work required to obtain the proofs on thebenchmark programs, by comparing the amount of JML code with respect tothe comments-free source code of the programs. It also details how many lemmashad to be manually proved.
Table 2. Human work on the tested programs

Program Source code size (bytes) Proved lemmasCode JML Automatically Manuallycrypt 4113 1882 227 77banking 11845 15775 379 159scheduler 12539 3399 226 49tcpip 83017 15379 2233 2191

On the three programs that are annotated for the unique purpose of ourstudy, the JML overhead is about 30% of the code size. The banking programwas annotated in order to prove other properties, and because of this is made ofmore JML annotations than actual code. Most of the lemmas could be provedby Simplify, but a non-neglectable part needed human-assistance with Coq. Themost demanding application was the TCP/IP stack. Because of its complexity,nearly half of the lemmas could not be proved automatically.The gain in terms of memory footprint obtained using our approach is there-fore real. One may also wonder whether the runtime performance of such opti-mized methods would be increased. We did the measurements, and only noticeda very slight, almost undetectable, improvement of the execution speed of theprograms. This is explained by the fact that the exception check sites conditionsare always false when evaluated, and therefore the amount of supplementarycode executed is very low. The bodies of the proved runtime exception checksites are, actually, dead code that is never executed.

5 Limitations
Our approach su�ers from some limitations and usage restrictions, regarding itsapplication on multi-threaded programs and in combination with dynamic codeloading.
5.1 Multi-Threaded Programs
As we said in section 3, JACK only supports the sequential subset of Java.Because of this, we are unable to prove check sites related to monitor statechecking, that typically throws an IllegalMonitorStateException. However,they can be simpli�ed if it is known that the system will never run more thanone thread simultaneously. It should be noted, that Java Card does not makeuse of multi-threading and thus doesn't su�er from this limitation.
5.2 Dynamic Code Loading
Our removal of runtime exception check sites is based on the assumption that amethod's preconditions are always respected at all its call sites. For closed sys-tems, it is easy to verify this property, but in the case of open systems which mayload and execute any kind of code, the property could not always be ensured. Inthe case where the set of applications that will run on the system is not stati-cally known, our approach could not be safely applied on public methods sincedynamically-loaded code may call them without respecting their preconditions.
5.3 Implications Regarding Security
In addition to the two limitations mentioned above, one should also be awarethat our method doesn't protect the system from errors injections in the codethrough hardware attacks. Suppressing dynamic checking on systems that aresubject to such attacks would potentially open a security breach.
6 Conclusion
The main contribution of the present article is a new Java-to-native code opti-mization technique based on static program veri�cation using formal methods.The methodology gives more precise and therefore better results than other ex-isting solutions in the �eld and allows us to remove almost all the exceptioncheck sites in the native code, as we show in section 4. The memory footprints ofnatively-compiled methods thus become comparable with the ones of the originalbytecode when compiled in ARM thumb.Although we applied this work to the ahead-of-time compilation of Javamethods, the bytecode annotations could also be interpreted by JIT compilers,which would then also be able to completely get rid of a considerable part ofruntime exceptions.

Acknowledgments
The authors would like to thank Jean-Louis Lanet for kindly providing us withthe JML-annotated sources of the banking, scheduler and tcpip programsevaluated in this paper.
References
1. D. Mulchandani, \Java for embedded systems," Internet Computing, IEEE, vol. 2,no. 3, pp. 30 { 39, 1998.2. L. Lagosanto, \Next-generation embedded java operating system for smart cards,"in 4th Gemplus Developer Conference, 2002.3. G. Grimaud and J.-J. Vandewalle, \Introducing research issues for next generationJava-based smart card platforms," in Proc. Smart Objects Conference (sOc'2003),(Grenoble, France), 2003.4. L. Burdy, A. Requet, and J.-L. Lanet, \Java applet correctness: A developer-oriented approach," in FME 2003: Formal Methods: International Symposium ofFormal Methods Europe (K. Araki, S. Gnesi, and D. Mandrioli, eds.), vol. 2805,pp. 422{439, 2003.5. T. Lindholm and F. Yellin, Java Virtual Machine Speci�cation. Addison-WesleyLongman Publishing Co., Inc., 1999.6. K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, T. Ogasawara, T. Suganuma,T. Onodera, H. Komatsu, and T. Nakatani, \Design, implementation, and evalua-tion of optimizations in a just-in-time compiler," in JAVA '99: Proceedings of theACM 1999 conference on Java Grande, (New York, NY, USA), pp. 119{128, ACMPress, 1999.7. T. A. Proebsting, G. Townsend, P. Bridges, J. H. Hartman, T. Newsham, and S. A.Watterson, \Toba: Java for applications: A way ahead of time (wat) compiler," inThird USENIX Conference on Object-Oriented Technologies (COOTS), (Portland,Oregon), University of Arizona, June 1997.8. G. Muller, B. Moura, F. Bellard, and C. Consel, \Harissa: a
exible and e�cientjava environment mixing bytecode and compiled code," in Third USENIX Con-ference on Object-Oriented Technologies (COOTS), Portland, Oregon: USENIX,June 1997.9. \JC Virtual Machine." http://jcvm.sourceforge.net/.10. R. Vall�ee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co, \Soot- a java optimization framework," in Proceedings of CASCON 1999, pp. 125{135,1999.11. J. Hummel, A. Azevedo, D. Kolson, and A. Nicolau, \Annotating the Java byte-codes in support of optimization," Concurrency: Practice and Experience, vol. 9,no. 11, pp. 1003{1016, 1997.12. A. Azevedo, A. Nicolau, and J. Hummel, \Java annotation-aware just-in-time (ajit)complilation system," in JAVA '99: Proceedings of the ACM 1999 conference onJava Grande, (New York, NY, USA), pp. 142{151, ACM Press, 1999.13. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Mller, andJ. Kiniry, JML Reference Manual, July 2005.14. M. Pavlova, \Java bytecode logic and speci�cation," tech. rep., INRIA, Sophia-Antipolis, 2005. Draft version.15. B.Meyer, Object-Oriented Software Construction. Prentice Hall, 2 revised ed., 1997.16. \Java In The Small." http://www.li
.fr/RD2P/JITS/.

