HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation

On the numerical approximation of first order Hamilton Jacobi equations

Remi Abgrall 1, 2 Vincent Perrier 2
1 SCALAPPLIX - Algorithms and high performance computing for grand challenge applications
INRIA Futurs, Université Bordeaux Segalen - Bordeaux 2, Université Sciences et Technologies - Bordeaux 1, École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), CNRS - Centre National de la Recherche Scientifique : UMR5800
Abstract : We review some methods for the numerical approximation of first order Hamilton jacobi equations. Most of the discussion on conformal triangular type meshes but we show how to extend this to the most general meshes. We review some first order monotone schemes and also high order ones specially designed for steady problems.
Document type :
Complete list of metadata

Contributor : Rapport de Recherche Inria Connect in order to contact the contributor
Submitted on : Thursday, December 7, 2006 - 11:42:39 AM
Last modification on : Monday, February 28, 2022 - 5:22:02 PM
Long-term archiving on: : Friday, September 24, 2010 - 10:09:41 AM


Files produced by the author(s)


  • HAL Id : inria-00113948, version 4


Remi Abgrall, Vincent Perrier. On the numerical approximation of first order Hamilton Jacobi equations. [Research Report] RR-6054, INRIA. 2006, pp.11. ⟨inria-00113948v4⟩



Record views


Files downloads