Skip to Main content Skip to Navigation
Reports

On the numerical approximation of first order Hamilton Jacobi equations

Remi Abgrall 1, 2 Vincent Perrier 2
1 SCALAPPLIX - Algorithms and high performance computing for grand challenge applications
INRIA Futurs, Université Bordeaux Segalen - Bordeaux 2, Université Sciences et Technologies - Bordeaux 1, École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), CNRS - Centre National de la Recherche Scientifique : UMR5800
Abstract : We review some methods for the numerical approximation of first order Hamilton jacobi equations. Most of the discussion on conformal triangular type meshes but we show how to extend this to the most general meshes. We review some first order monotone schemes and also high order ones specially designed for steady problems.
Document type :
Reports
Complete list of metadata

https://hal.inria.fr/inria-00113948
Contributor : Rapport de Recherche Inria <>
Submitted on : Thursday, December 7, 2006 - 11:42:39 AM
Last modification on : Thursday, February 11, 2021 - 2:46:02 PM
Long-term archiving on: : Friday, September 24, 2010 - 10:09:41 AM

Files

RR-6054.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : inria-00113948, version 4

Collections

Citation

Remi Abgrall, Vincent Perrier. On the numerical approximation of first order Hamilton Jacobi equations. [Research Report] RR-6054, INRIA. 2006, pp.11. ⟨inria-00113948v4⟩

Share

Metrics

Record views

577

Files downloads

239