Some applications of $l^\infty$-constraints in image processing

Pierre Weiss 1 Gilles Aubert 2 Laure Blanc-Féraud 1
1 ARIANA - Inverse problems in earth monitoring
CRISAM - Inria Sophia Antipolis - Méditerranée , SIS - Signal, Images et Systèmes
Abstract : Our goal in this paper is to give algorithms for minimizing generic regularizing functionals under a $l^\infty$-constraint. We show that many classical models using total variation can be stated under this formalism. Among others are the Rudin-Oscher-Fatemi model, the BV-l1 model, BV-$l^\infty$ model and Meyer's cartoon +texture decomposition model. Then we describe a general convergence algorithm to solve such problems. This algorithm is the projected subgradient descent. We finally give numerical results that show the qualities and limits of our model, and we tackle the question of the use of the total variation to treat bounded noises such as quantization noise.
Type de document :
Rapport
[Research Report] RR-6115, INRIA. 2006, pp.33
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00114051
Contributeur : Pierre Weiss <>
Soumis le : vendredi 9 février 2007 - 13:49:17
Dernière modification le : mercredi 31 janvier 2018 - 10:24:04
Document(s) archivé(s) le : mardi 21 septembre 2010 - 11:59:47

Fichier

RR-6115.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00114051, version 2

Citation

Pierre Weiss, Gilles Aubert, Laure Blanc-Féraud. Some applications of $l^\infty$-constraints in image processing. [Research Report] RR-6115, INRIA. 2006, pp.33. 〈inria-00114051v2〉

Partager

Métriques

Consultations de la notice

330

Téléchargements de fichiers

138