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Abstract The paper addresses the problem of autonomous naviga-
tion of a car-like robot evolving in an urban environment. Such an
environment exhibits an heterogeneous geometry and is cluttered with
moving obstacles. Furthermore, in this context, motion safety is a crit-
ical issue. The proposed approach to the problem lies in the design of
perception and planning modules that consider explicitely the dynamic
nature of the vehicle and the environment while enforcing the safety
constraint. The main contributions of this work are the development of
such modules and they integration into a single application. Initial full
scale experiments validating the approach are presented.
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1 Introduction

In many urban environments, private automobile use has led to severe prob-
lems with respect to congestion, pollution, and safety. A large e�ort has been put
in industrial countries into developing new types of transportation systems, the
Cybercars, as an answer to this problem [19]. Cybercars are city vehicles with
fully automated driving capabilities. Such autonomous systems cannot be realized
without using several capabilities designed to work together in a single application.
Indeed, to safely navigate, the system will have to model the environment while
localizing in it, plan its trajectory to the goal and �nally execute it. The problem
of designing and integrating such capabilities, while accounting for the various con-
straints of such an application, remains largely open and lies at the heart of the
work presented in this paper.

Autonomy in general and motion autonomy in particular has been a long stand-
ing issue in Robotics. Several architecture have been proposed. They mainly di�er
in the context as well as the platform which is intended to perform this task. At
�rst the environment imposes its own constraints. Indeed, within an urban environ-
ment, its dynamic nature (pedestrians, other cars, etc...) imposes on the navigation
scheme a real time constraint over the time that the system has to take a decision.
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Figure 1 ParkShuttle system within Schipol airport parking lot.

In particular, when a robot is placed in a dynamic environment, it cannot remain
still, otherwise it might be hit by a moving obstacle. Besides, in a dynamic environ-
ment, the future motion of the moving obstacles is usually not known in advance
and will have to be predicted. Since the urban environment is partially predictable
it is possible to provide a valid prediction over a limited time horizon. At second, a
complex system as a car-like robot is constrained by its (nonholonomic) kinematics
as well as its dynamics. The intent of our work is to explicitly account for these
di�erent constraints in order to safely move the robot to its goal.

The �rst automated vehicles are designed to follow a prede�ned path. The
path following problem, classic in control theory, requires the vehicle to estimate
its instantaneous position with respect to the path. A dedicated infrastructure is
used to materialize the path and enable the vehicle to relocalize on it. Early wire
guided vehicles follow a wire buried in the ground, by mean of inductive sensors.
Later techniques use dead-reckoning associated with relocalisation on magnets or
transponders widely spaced in the ground. These techniques allow for �ne tuning
the exact path of the vehicles. On these con�gurations the safety is related to block-
ing the access of pedestrians to the special roads, or detecting obstacles on the way
and stopping the vehicle. This kind of system have been already commercialized,
such as on the ParkShuttle (Fig. 1).

Recent techniques permit the localisation of the vehicle using the natural fea-
tures in the environment. These techniques have the advantage of requiring no
modi�cation of the environment. In this case, a collision free path must be com-
puted which requires a model of the environment that can be built by extracting
higher-level features. Autonomous vehicles that are infrastrucuture independent
become thus very complex. Therefore, most of the work on autonomous vehi-
cles has been applied to simple indoor robots for which kinematic and dynamic
constraints are usually not considered. Furthermore, they usually rely on strong
geometric assumptions for the environment model construction, and disregard the
moving obstacles. Some interesting autonomous navigation systems considering
moving obstacles and relaxed geometric constraints were presented by [29] and
more recently by [18, 21]. In the last years signi�cant advances have provided
medium to high speed autonomous vehicles evolving in outdoor [30, 13]. These
systems are able to evolve in structured and non structured environment, consid-
ering the dynamic constraints of the vehicle and the presence of static obstacles.
Recently an autonomous navigation architecture integrating moving obstacles and
safety notions was presented [22]. However they rely on a structured environment
assumption and do not explicitly integrate the dynamic environment considerations
at the planning stage. Finally some previous works have discussed the safety issues
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in urban environments and their relation to the perception requirements [26].

Previous approaches di�er in several ways, however it is clear that an au-
tonomous robot placed in a partially predictable dynamic environment must have
perceptive, deliberative and reactive capabilities. In this paper, the perception re-
lies on an Simultaneously Localization and Mapping algorithm (SLAM) algorithm
extended for moving objects detection and tracking so as to build a world model
including static obstacles as well as a short term prediction of the moving obstacles
motions. The deliberative scheme uses this world model to generate trajectories
that explicitly account for the constraints of the environment and the system. The
approach which is used rely on a deliberative strategy that interleaves planning with
execution. It consists in incrementally and iteratively calculating a safe trajectory
to the goal in order to provide motion autonomy to the system.

To the authors' knowledge, the approach presented in this paper is the �rst
integrated system that handles explicitly the dynamic nature of the environment
and the kinematics and dynamics of the system.

We review some previous work on perception and planning in the following
sections. At �rst in �2, where the proposed perception algorithm is detailed. At
second, in �3, after reviewing the issues and related work, we present the planning
scheme. In �4 and �5 we present the integration of both modules and the results
of experiments performed on a real car-like robot, the Cycab. Future works are
discussed in �6 and �nally we draw some conclusions in �7.

2 Perception in urban environments

2.1 Introduction

Perception is the process of transforming measures of the world into an internal
model. The kind of model (and the choice of the sensors) depends on the applica-
tion. For autonomous navigation, the world model needs to integrate at least four
elements: the target to attain, the position of the static obstacles, the current and
future position of moving obstacles and the current state of the vehicle (position,
speed, etc...).

Due to occlusion and limited �eld of view the robot can not observe the entire
world at each measurement. Integrating successive observations into a consistent
map of forward obstacles is required to create an e�ective planning. It is well know
that it exists a duality between creating consistent maps and localizing the robot,
such duality has been extensively studied as the Simultaneous Localization And
Mapping (SLAM) problem [28].

Unfortunately most of the works in SLAM suppose a static environment. The
presence of moving obstacles will contaminate the map and perturb the data asso-
ciation between two observations. For the planning purpose we require to explicitly
identify the moving obstacles and estimate their current state in order to predict
their future position.

We can see that for autonomous navigation, as a strict minimum, the robot re-
quires to solve the Simultaneous Localization, Mapping and Moving Objects Track-
ing (SLAMMOT) problem [32]. In the following paragraphs we will propose a solu-
tion to this problem and then we will discuss the additional considerations required
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when integrating perception and planning.
The key point to create correct maps (and thus correctly localize the robot)

is to successfully do data association between current and past measures. Data
association methods have a limited �attraction region�, if the initial guess is outside
this region the association will produce an erroneous result. The attraction region
depends on the existing map, the initial estimate, the current measure and the
method employed.

When the robot successfully recognize a previously visited place the SLAM algo-
rithms will allow to reduce its pose uncertainty helping thus in the data association
process.

The Incremental Maximum Likelihood method [28] is a simple approach for
small scale maps construction. The incurred error is acceptable when the robot
does not close a loop and the drift inside the map is under the desired bound.
The incremental construction of the map eliminates the need to store the previous
measures or to recompute online the map. A set of small scale maps can be used
as building blocks for a larger map. In section �6 we discuss the city sized SLAM
problem.

In outdoor mobile robotics, the sensors commonly employed to observe the
surrounds are video cameras, radars and laser scans [27]. We choose the last one
due to its larger range (more than 180◦ and 40 meters) and high precision (±1◦ and
±0.1 meters). Notice that the laser scanner measures provide information about the
presence of obstacles and the existence of free space. We are supposing that urban
environments are locally planar and thus a 2D representation of the environment
is good enough for navigation purposes. Since the world model needs to describe
the presence of obstacles, dense measures of the environment are required. Also it
has been observed that urban environments present a high variability in geometric
shapes and little assumptions can be made about the expected patterns to appear
[32, chapter 3]. Thus feature based data association, a common approach in indoor
robotics, seems brittle for the urban environment application. Instead, a dense scan
matching algorithm is proposed.

In subsection �2.2 we brie�y describe the choiced method to associate successive
measures in order to construct the local maps. Then in subsection �2.3 we explain
how to detect measures of moving objects based on the consistency of the observed
free and occupied space.

2.2 Laser scan data association

Laser scan data association (so called �scan matching�) can be used both to
estimate small displacements between two measures, and to recognize a revisited
place.

The classic method for scan matching (both in 2D and 3D) is the Iterative
Closest Point (ICP) [35]. This iterative method is very straightforward but provides
slow convergence rates and small attraction regions. This is why many variants have
been proposed [24], changing the point to point association methods or changing
the optimization metrics [16].

Recently a new approach has been proposed [8, 11]. Instead of matching two
cloud of points, a cloud of points is matched over a distribution of probabilities
indicating the probable presence of an object at each point of the space. This
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approach has the advantages of allowing error modeling of the sensor, avoiding
the expensive closest point search and providing more robust results with faster
convergence rates.

One method of this family, called Normal Distribution Transform (NDT) has
been successfully applied to robotic applications [1]. This method can be seen as a
crude but fast approximation for modelling the space occupancy probability distri-
bution, or as an enhanced version of the traditional occupancy grid representation
[9]. Instead of approximating the occupancy probability by a grid of squares, it is
approximated by a grid of overlapping gaussian distributions. The space is subdi-
vided in a grid and each cell is associated to one or more gaussians distributions[1].
When a new point hit a cell the associated gaussians parameters are incremen-
tally updated. Since the gaussians approximate locally the observed obstacles, the
representation is much �ner than the grid granularity (see �g. 2).

Each bi-dimensional Gaussian is de�ned by its mean vector q and its covariance
matrix Σ. A laser scan measure is de�ned as a set of point xi. Then the score
function between a scan and the occupancy distribution can be written as equation
1.

score =
∑

i

exp
(
−1

2
· (x′i − qi)T Σ−1

i (x′i − qi)
)

(1)

The term x′i describes the scan point xi in the map reference frame (translated
using current pose estimate) and qi, Σi are the mean and covariance of a Gaussian
covering the point x′i (there can be more than one gaussian per point).

The objective of scan matching is to search the displacement of the scan that
optimizes the score of (1). The derivatives of the score function can be written
explicitly and are cheap to evaluate thus optimization methods such as gradient
descent and Newton's can be applied directly. It has been experimentally validated
that this approach is both faster and more robust than ICP [15].

Since the grid of gaussians can be updated incrementally, it does not only provide
a good scan matching method, but it can also be used as a map representation.
Since the gaussians are estimated using measures from scans matched using the
maximum aposteriori probability, they variance matrix will naturally represent the
measure error. Using an regular grid make the assumption that the measure error
still low (smaller than the grid granularity) as distance augment, which is true for a
laser scanner. When using vision as the base sensor the error augment exponentially
with the distance thus the proposed approach would be inadequate. In such case a
multiresolution grid approach should be explored [17].

The second derivatives of the score function can be written explicitly, so the
Hessian matrix can be evaluated at the computed optimum point. Then this matrix
can be used to approximate the uncertainty of the scan matching. This is very useful
for a good estimation of the pose uncertainty, the ICP algorithm and its variants
do not provide any cheap way to do this [32, chapter 3].

In the experiments here presented we are not yet dealing the revisiting problem
(a core aspect of the SLAM problem). However since the presented data association
is more robust, it is at least more adequate than plain ICP. If more computing time
is available it is possible to enhance the matching method using stochastic search
or with a multiresolution extension [8, 23].



6

Table 1 Inverse observation model for the static occupancy probability [34].

P (Sx
t−1) P (Sx| ot) P (Sx

t | Sx
t−1, ot)

Free Free Low
Unknown Free Low
Occupied Free Low

Free Occupied Low
Unknown Occupied High
Occupied Occupied High

In the next subsection we will discuss how to merge the grid of gaussians rep-
resentation with a moving objects detection method.

2.3 Moving objects detection and tracking

Many works discuss how to detect moving objects, and many others how to con-
struct maps of static objects. However yet little work have been done in doing both
simultaneously. The proposed methods include o�ine optimization [2, 9, chapter 4]
and online heuristics [9, 18, chapter 3]. First works on online SLAMMOT proposed
to detect moving objects using a data consistency approach between successive laser
scans [32]. This approach was then formalized in a bayesian estimation formulation
using a modi�ed grid of occupancy [34]. Here we will discuss how to integrate this
last method with a grid of gaussians representation.

The core notion to detect moving objects is the inconsistencies between observed
free space and observed occupied space. If free space appears where a static object
was observed, then it probably moved. If measures appear in areas previously seen
as free, then these measures probably correspond to moving objects.

Let be P (Sx
t ) the static obstacle occupancy probability at the point x and the

instant t. Instead of updating the occupancy probability P (Sx
t ) using only the last

observation value ot, the update depends both of the observation value ot and of
the last occupancy estimate P (Sx

t−1).
The probability of occupancy is divided in three ranges Free, Unknown and

Occupied. Then the relation P (Sx
t | Sx

t−1, ot) enforcing the coherence between free
and occupied space observations can be illustrated as shown in table 1. The case
when the last observation gives no information about the occupancy probablity,
P (Sx| ot) = Unknown, is omitted. The distribution P (Sx| ot) is constructed based
on the sensor characteristics, while P (Sx

t | Sx
t−1, ot) is a design variable, see [34] for

more details.
The occupancy probability update is then written as in equation 2.

odds(x) = P (x)/(1− P (x)),
odds(Sx

t | o1...t, Sx
1...t−1) =

odds(Sx
t | ot, Sx

1...t−1) · odds(Sx)−1 · odds(Sx
t−1).

(2)

In order to merge this approach with the grid of gaussians representation we
propose to separate the storage of occupancy measures Oocc and the free space
measures Ofree, as de�ned in 3.

Oocc = {o| P (Sx|o) = Occupied and o ∈ o1...t}
Ofree = {o| P (Sx|o) = Free and o ∈ o1...t}

(3)
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Figure 2 Static occupancy probability scalar �eld approximation using a grid of gaus-
sians and bi-linear interpolation. Cells size is 1 [m]. A vehicle and its past trajectory are
also shown.

Since odds(Sx
t |o1...t, Sx

1...t−1) is estimated from a multiplication series (equation
2), this series can be split and reduced in two separate factors, de�ned at (4). The
factor oddsx

occaccounts the occupancy estimation based in occupied space measures
and the second factor oddsx

free accounts the occupancy estimation based in free
space measures.

oddsx
occ = odds(Sx

t | Oocc, Sx
1...t−1)

oddsx
free = odds(Sx

t | Ofree, Sx
1...t−1)

(4)

Then occupancy probability can be retrieved at any moment multiplying the
two values, as shown by the equation 5.

odds(Sx
t | o1...t, Sx

1...t−1) = oddsx
free · oddsx

occ (5)

Doing this separation the grid of gaussians can be used directly as part of the
detection of static obstacles and moving obstacles.

If points are added to a gaussian only when P (Sx
t−1) = Occupied then the gaus-

sian distribution evaluated at x can be used as an approximation for oddsx
occ. This

means that the grid of gaussians provides an estimate of the static obstacles in
the environment. Because of the dynamic nature of the environment, a previously
static object can start moving. In order to clean the gaussians that correspond
to space that is no more occupied it is necessary to keep an estimate of the occu-
pancy probability at its mean value qi (we suppose that the shift of mean point
during gaussians parameters updates does not invalidate the occupancy probability
estimate). When P (Sqi

t ) = Free the corresponding gaussian is erased.
The factor oddx

free can be estimated using any representation (including coarse
or �ne grids). In our implementation we use a bi-linear interpolation between the
corners of a cell of the grid of gaussians. An illustration of the resulting occupancy
probability scalar �eld can be seen at �gure 2.

The proposed method still being a gross approximation (just as grid methods),
however separating occupancy and free area factors allows to better control the
approximation used. More precise approaches would consider updating the gaussian
parameters when portions of it pass into free regions. The proposed approach
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allows to have a lightweight representation that allows fast matching and detection
of moving objects.

At the end of the scan matching, each point x′i has already been evaluated over

its corresponding gaussians, thus odd
x′

i
occ is available. Computing the odds

x′
i

free allows

to estimate P (Sx′
i

t ). Points were P (Sx′
i

t ) = Free are considered as moving objects
measures.

Once we are able to detect moving objects we need to track them in order to
estimate their state and predict their behaviour (since the prediction will be used
for the planning stage). Tracking multiple moving objects is a classical problem. In
the general case this problem is very hard, however it has be shown experimentally
that simple methods are good enough to cope with urban scenarios [7, 32]. We use
a similar approach to [7].

2.4 Safety considerations

In the driverless vehicle context, safety is associated to collision free trajectories.
Since the world model provided by the perception module is the only information
available for the planning we have to ensure that the trajectories without colli-
sions generated in the predicted world, will still being free of collisions during their
realization in the real world.

To ensure this the world model need to do consistent predictions: predicted free
space has to be e�ectively free in the real world future.

The future observations of the moving obstacles need to be inside the predicted
occupied area. Integrating adequately the model error into the predictions allows
to have consistent predictions. However, too loose predictions (large models errors)
will generate large banned areas forcing the planning to be too much conservative.

In order to have a consistent prediction, we do not only have to deal with the
measured moving obstacles, but also with not yet observed ones. At the unobserved
limits of the �eld of view frontier we have to assume the possible appearance of
moving obstacles. To ensure trajectories free of collisions, we need to suppose the
worst case, i.e. the presence of obstacles moving directly toward the current robot
position at the maximum expected speed. Creating such virtual obstacles will force
the planning module to generate a trajectory conservative enough to deal with the
sudden apparition of new obstacles.

In urban environment, the expected maximum speed of surrounding obstacles
depends on their position. It would be interesting to be able to model their maxi-
mum speed as a function of the space in order to make worst case estimations less
conservative [31, 33].

Once we are able to create a consistent world model in real time, we now need to
construct a trajectory that respects both safety and computation time constraints.
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3 Planning in dynamic environment

3.1 Introduction

Planning in an environment cluttered with moving obstacles implies to plan
under a real time constraint. Indeed, a robotic system placed in a dynamic envi-
ronment has a limited time only to compute the motion plan to be executed. If
the execution of the plan could begin at an arbitrary time, there would not be any
problem. This is however not the case. In a real dynamic environment, a robotic
system cannot safely remain passive as it might be collided by a moving obstacle.
This time the system has to make its decision is the decision time constraint, δd

and is therefore a real-time constraint imposed by the environment.
Early work addressing the problem of navigation within dynamic environments,

rely on reactive approaches. These methods consist in a local exploration of the
velocity space, i.e. the set of all possible velocities of the robot, in order to �nd the
proper velocity to be applied during the next time step. For robots controlled in
speed and steering angle, the velocity output can be directly executed by the robot,
which makes these techniques particularly e�cient. Their local nature exhibit how-
ever strong limitations in terms of convergence. Besides, complex kinematic or
dynamic constraints are di�cult to handle in a general way, without resorting
to crude approximations. Recently, deliberative methods accounting for time con-
straints, have been also presented. Deliberative methods, also referred to as motion
planning methods, consist in calculating a priori a complete motion plan to the goal.
Some approaches based on improved dynamic programming techniques, have been
presented [14]. These methods however are restricted to low dimension problems
and cannot account for general kinematic or dynamic system's constraints. Recent
random techniques have been presented with very fast and impressive results for
higher dimension problems [12]. The real time constraint is however never explicitly
considered and therefore no computation time upper bound can be guaranteed. Due
to the complexity of the motion planning problem, sometimes referred to as �the
curse of dimensionality�, there is little hope that within an arbitrary bounded time,
a complete plan to the goal might be found. Therefore, the proposed approach to
the problem is a Partial Motion Planner (PMP) that guarantees a bounded compu-
tation time at the expense of its completeness, i.e. the guarantee to plan a complete
trajectory to the goal.

3.2 Notations

Let A denote the car-like robot placed in a workspace W (�g. 3). The model
of the car-like robot used in the planning strategy is described by the following
di�erential equation :

ẋ
ẏ

θ̇
v̇

ξ̇

 =


v cos θ
v sin θ

v tan φ
L
0
0

 +


0
0
0
1
0

α +


0
0
0
0
1

 γ (6)
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(a) bicycle model (b) The cycab

Figure 3 The car-like vehicle. A.

Figure 4 Partial Motion Planning architecture.

This equation is of the form ṡ = f(s, u) where s ∈ S is the state of the system, ṡ
its time derivative and u ∈ U a control. S is the state space and U the control space
of A. A state of A is de�ned by the 5-tuple s = (x, y, θ, v, ξ) where (x, y) are the
coordinates of the rear wheel, θ is the main orientation of A, v is the linear velocity
of the rear wheel, and ξ is the orientation of the front wheels. A control of A is
de�ned by the couple (α, γ) where α is the rear wheel linear acceleration and γ the
steering velocity, with |v| ≤ vmax(velocity bound), α ∈ [αmin, αmax] (acceleration
bounds), γ ∈ [γmin, γmax] (steering velocity bounds) and |ξ| ≤ ξmax (steering angle
bounds). L is the wheelbase of A, A(s) is the subset ofW occupied by A at a state
s. Let φ ∈ Φ: [t0, tf ] 7−→ U denote a control input, i.e. a time-sequence of controls.
Starting from an initial state s0, at time t0, and under the action of a control input
φ, the state of the system A at time t is denoted by s(t) = φ(s0, t). An initial state
and a control input de�ne a trajectory for A, i.e. a time sequence of states.

3.3 Partial Motion Planner (PMP) Algorithm

The partial motion planner (PMP) is a motion planning strategy that explicitly
accounts for the real time constraint imposed by the environment. Besides, in a
real environment, the model of the future can be predicted over a limited time only
δv. Therefore, PMP is structured around a constant planning cycle (PMP cycle in
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Figure 5 Tree construction over a PMP cycle.

�g. 4) of duration δc, in order to be able to regularly get an update of the model.
This cycle duration must in fact ful�ll the requirement that δc = min(δd,

1
2δv). A

typical PMP cycle is described as follows, starting at time ti:

1. Get an updated model of the future.

2. The state-time space ofA is searched using an incremental exploration method
that builds a tree rooted at the state s(ti+1) with ti+1 = ti + δc.

3. At time ti+1, the current iteration is over, the best partial trajectory φi in
the tree is selected according to given criteria (safety, metric) and is fed to
the robot that will execute it from now on. φi is de�ned over [ti+1, ti+1 + δhi

]
with δhi the trajectory duration.

After completion of a planning cycle i, it is most likely the planned trajectory of time
horizon δhi is partial. Thus, the PMP algorithm iterates over a cycle of duration
δc, as depicted in �gure 4, until the goal is reached. The algorithm operates until
the robot reaches a neighbourhood of the goal state. In case the planned trajectory
has a duration δhi

< δc, the cycle of PMP can be set to this new lower bound or
the navigation (safely) stopped. In practice however, the magnitude of δhi is much
higher than δc.

3.4 Space Exploration

In our work, we use an incremental sampling based method. Sampling based
methods avoid the complete space representation by probing the space by mean of
a collision detection module. Incremental methods have the advantage to be in-
teruptible, ie. anytime the calculation is stopped, a partial answer can be returned.
The exploration of the state-time space ST consists in building incrementally a tree
by integrating the system over which a constant control is applied, over a small du-
ration. To this mean, the control space of the system is discretized. We use the set
of bang bang controls Ũ=(α, γ) with α ∈ [αmin, 0, αmax] and γ ∈ [γmax, 0, γmin].
The tree construction consists in the following (Fig. 5) :

1. the state sc from the existing tree and closest to the target sr is selected.

2. a control from Ũ is applied to the system during the �xed integration step
from sc.
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Figure 6 In�uence of the metric on the generated trajectory.

(a) Inevitable Collision State vs. Colli-
sion Free State

(b) ICS computation

Figure 7 Inevitable Collision States (ICS).

3. In case the newly obtained state sn is safe, this control is valid.

The operation is repeated over all control inputs. Finally the new safe state sn

closest to the goal, is �nally selected and added to the tree.
One di�culty when performing motion planning using an incremental approach

is the choice of the metric used to �nd the closest states and expand the nodes
when building the tree. This parameter is recognized to have a large in�uence on
the trajectory quality specially when dealing with non-holonomic systems. Indeed,
a typical euclidean metric does not account for the heading of the car. In case a
L∞based metric is used, the heading is weighted but does not account for a real
non-holonomic displacement. Such a metric can yield to oscillatory and poor quality
trajectories with low convergence (Fig. 6(b)). The �rst non-holonomic metric was
based on real path length calculation, a summation of straight segments and arc
of circles [4]. Later, the continuous curvature (CC) metric was presented in [25].
Basically, this metric connects the straight path and the arc of circle of the dubbins
path, where there is a discontinuity in the curvature, with a clothoid. This metric
is very natural to the system considered in our work and provides very high quality
results (Fig. 6(a)).

3.5 Safety Issues

Like every method that computes partial motions, PMP has to face a safety
issue: since PMP has no control over the duration of the partial trajectory that
is computed, what guarantee do we have that A will never end up in a critical
situations yielding an inevitable collision? We need however to de�ne the safety we
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Figure 8 Navigation within an urban environment cluttered with moving pedestrians.

consider. In �gure 7(a) we consider a selected milestone of a point mass robot P
with non zero velocity moving to the right (a state of P is therefore characterised
by its position (x, y) and its speed v). Depending upon its state there is a region of
states for which P, even though it is not in collision, will not have the time to brake
and avoid the collision with the obstacle. As per [5], it is an Inevitable Collision
State (ICS). In this paper, we refer to a safe state as ICS-free.

In general, computing ICS for a given system is an intricate problem since it
requires to consider the set of all the possible future trajectories. To compute in
practice the ICS for a system such as A, it is taken advantage of the approximation
property established in [5]. This property shows that a conservative approximation
of the ICS can be obtained by considering only a �nite subset I of the whole set of
possible future trajectories. For our application we consider the subset I of brak-
ing trajectories obtained by applying respectively constant controls (αmin, γmax),
(αmin, 0), (αmin, γmin) until the system has stopped. In the PMP algorithm, every
new state is similarly checked to be an ICS or not over I. In case all trajectories
are in collision, this state is an ICS and is not selected (see �g. 7(b)).

A safe trajectory therefore consists of a sequence of safe states, ie. ICS-free
states. However, a practical problem appears when safety has to be checked for
the continuous sequence of states de�ning the trajectory. In order to solve this
problem and further reduce the complexity of the PMP algorithm, we presented in
[20] a property that simpli�es the safety checking for a trajectory. This property
is important since �rst, it proves a trajectory is continuously safe while the states
safety is veri�ed discretely only, and second it permits a practical computation of
safe trajectories by integrating an inevitable collision detection module within the
exploration algorithms in place of the conventional geometric collision detection
module. In (Fig.8), simulation results of partial safe trajectories of a car moving
within a pedestrian environment are shown.

4 System Integration

The algorithms presented in �2 and �3, are implemented in C++ and integrated
into a single application controlling an automated electric vehicle, the Cycab (Fig.
3(b)). The complete software runs on a standard 3.3 [GHz] PC.

Currently the only input data used is one layer of an IbeoML laser scanner.
The distribution P (Sx| ot) is de�ned according to the manufacturer speci�cations.
Measures are done at 8 [Hz] and the world model is updated in realtime. The
trajectory update rate is set at 2 [Hz].

The tracking of the generated trajectories is ensured by a non-linear proportional
closed loop controller (equation 7) . The control take advantage of the fact the
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Figure 9 Execution time-line between two measurements.

trajectory planner computes a reference state including the desired speed value.

v = vref · (1− k1 ·∆x)
φ = k2 ·∆y + k3 · sin∆θ

(7)

with vref the reference velocity given by the open loop trajectory calculated by
PMP. The paramaters k1, k2and k3 are tuning coe�cients of the control law. The
probable errors bounds of the tracking are integrated in the vehicle bounding box
used during the planning stage in order to consider the collision risk associated to
tracking errors.

Both perception and planning algorithms are designed to incrementally and
iteratively construct a solution which enables an e�cient and simple interweaving.
Figure 9 present the task allocation sequence in the vehicle processor. As soon
as a measure is available the vehicle state estimate is updated and the control
command is sent. Computing the command signal as soon as possible allows to
keep a good state estimate, and thus helping the control task. After the control
stage, the world model is incrementally updated and processor time is allocated
for the planning computation. During this time slot the planned trajectory is
incrementally updated. Depending on the desired trajectory update rate a trade-o�
is made between reactivity and planning horizon. The execution cycle is executed
under a soft real time constraint. The integrated system is able to autonomously
drive in real world environments toward goals lying within about a hundred meters,
while avoiding static and moving obstacles.

The described perception algorithm is based on an optimization procedure. Fix-
ing an maximum number of optimization steps allows to bound his computation
time (currently set to 20 steps). In theory the method used to track moving obsta-
cles grows cuadratically with the number of moving objects, however even for more
than ten obstacles the computation time related to this task is neglible compared to
the optimization step of the scan matching. The planning algorithm is also based on
an optimization procedure which is interrupted on a periodic fashion. The output
quality of both modules is proportional to the computation power (force in time)
available. However as shown in the next section, current computational capabilities
are enough for full scale experiments.

5 Experimental results

In �gure 10, we present the result of an early experiment. The top of the pictures
are snapshots of the world model constructed during a single experiment. Darker
areas represent higher occupancy probability of static obstacles. Moving obstacles
are represented by a circle. Current results do not include the estimation of un-
observed obstacles. The dark rectangle describes the current vehicle pose and the
light one, the desired vehicle pose (speeds are not shown). The executed trajectory
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is behind the vehicle and the current planned partial trajectory is represented in
front of it. The bottom of the pictures show the corresponding scenes in the real
world. During initial validation, the maximum speed of the Cycab is limited to low
speeds (1.5 [m/s]), full speed experiments at higher speed (4 [m/s]) will be done in
the future.

First results indicate that this new architecture is functional and provides the
expected behaviour. The vehicle is able to incrementally construct a map of ap-
proximately 50 square meters, de�ne a safe partial trajectory towards the goal over
some tens of meters and follow it, all in real time.

Observed execution times indicate that 40% of processing time is dedicated to
perception, 40% to planning and 20% to graphical output (tracking cost is negli-
gible). This gives average values of 50 [ms] for localization, mapping and moving
objects tracking in the presented scenario and 200 [ms] to compute a trajectory
for the next 500 [ms] avoiding the obstacles shown in the �gure 10. Notice that in
practice the trajectories found provides a solution for a time horizon much larger
than 500 [ms] (around 20 times larger in the presented scenario).

6 Toward city scale

We believe that the discussed perception and planning methods provide a sound
solution to the problem of navigation in urban environments. However we have
focused the discussion on the core issues related to small area navigation. One of
the major remaining open task left is the extension of this work to the city scale
level.

In the previous section it was shown that integrated perception and planning in
medium sized urban areas is possible. The grow of computational power ensures
that having better maps, trajectories and being able to deal with many moving
obstacles is not an issue. As mentioned in section 2, in order to keep the local map
error bounded a new map should be created periodically. Using previous measures
to initialize the new map allows to have a continuous �ow between successive local
maps. This is only a technical issue related to the software implementation.

The perception and planning coupling presented here is a generic approach that
can be applied to an environment of arbitrary complexity. For real world deploy-
ment ones has to ensure that the modeling of the moving objects and the inclusion
of the non observed ones allows to do consistent predictions while having viable safe
trajectories. If the vision range of the vehicles is too low, the vehicle will be not
able to �nd a safe trajectory. The explicit elucidation of the interaction between
safe planning, sensors precision and sensors range is left for a future document.

In order to reach city scale it is also necessary to connect the street level real
time trajectory planning module to a city level road planner (such as commonly
found in commercial navigation products). A non trivial issue arises with the fact
that trajectory planning tries to reach a precise point on a local map, while current
city level maps provide information within a few meters of error. Somehow the
low precision path points have to be matched to the centimetric precision maps
used for trajectory computation. Even if this is done, a second non trivial issue
arises. We desire that the vehicle pass from one region to another as indicated by
the higher level road planner. However, the proposed trajectory planning method
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(a) start tracking the �rst tra-
jectory

(b) braking in front a pedes-
trian

(c) avoiding obstacle and
pedestrian

(d) continuing after avoiding
the hedge and another pedes-
trian

Figure 10 Experiment results.
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tries to reach a goal de�ned by a speci�c vehicle state (a speci�c point on the road).
Extending the method to the notion of �goal region� is non trivial.

In order to solve these issues it is required to match the constructed high pre-
cision local map to the topologic description of the roads (used for road planning).
While similar problems have been discussed in the context of aerial or satellital
image processing [6, chapter 8] this speci�c issue remains an open problem. Even
though the matching were realized the second issue would remain. A possible solu-
tion would consist in modifying the non-holonomic metric in order to integrate the
notion of �goal region� instead of a speci�c goal state. This idea would provide a
sound solution, however it seems complex and computationally more expensive. A
second approach consists in trying to obtain, a priori, the number of lanes on the
road. Then non-holonomic metric used in the trajectory planning can be modi�ed
to choose between a limited set of goals, one per lane center. This second idea,
provides an easier but more application speci�c solution.

Matching between the topological description of the road and the constructed
local maps can be done online. However there is a clear interest in constructing
o�ine a city scale high resolution map. Such map would be used to enhance the tra-
jectory planning since it would provide information about not yet observed regions.
This map would also allow to obtain the number of lanes information. Furthermore,
the matching to the topological roads description could be done o�ine, thus more
robustly.

Most of the work on automatic large map construction has been centered on
the SLAM problem. The objective is to compute an optimal map that reduces
the uncertainty of position for each map portion. Much has been discussed around
the computational cost associated to computing such maps and realizing online
SLAM. However it is important to remind that the key issue for successful map
construction is the data association problem. Optimizing online constructed map
(i.e. doing online SLAM), reduces the pose uncertainty and thus helps to do data
association. If data association was always successful o�ine map optimization
would su�ce. Existing commercial GPS systems allow to bound the uncertainty of
the position anywhere over the globe to less than 30 meters of error. However these
systems require a wireless link with satellites, which are commonly unreachable in
dense cities [3]. A realistic estimation is 50% of availability. Successful city sized
SLAM will depend on the adequate fusing of GPS measures with other sensors
measures in order to bound the pose uncertainty up to the attraction region of the
data association algorithm. An interesting research direction consists in enhancing
the data association method to be able to deal with GPS grade position errors.
Since the non availability regions of the GPS are variable, 100% success rates will
be not possible to ensure. In such situations erroneous data association detection
and correction methods can be applied [10].

7 Conclusion and perspectives

In this paper, we analyzed the main di�culties associated to the navigation of
driverless vehicles in urban environments. We propose a perception-planning duo
able to cope with an heterogeneous environment populated by static and moving
obstacles.
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The perception algorithm provides a better data representation, coupled with
faster data association and the detection of moving obstacles. The planning al-
gorithm generates safe trajectories, in bounded time. Their successful integration
provides an experimental validation of the proposal.

As discussed through this text we identify four areas for future work: con-
structing high precision city scale maps at low cost; coupling road and trajectory
planning; fusing multiple sensors for enhanced localization; fusing multiple sensors
for enhanced road, sidewalks and obstacles detection.

We believe that working on these key areas will open the door for city scale
driverless vehicles.
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