Cut Elimination in Deduction Modulo by Abstract Completion

Guillaume Burel 1 Claude Kirchner 1
1 PROTHEO - Constraints, automatic deduction and software properties proofs
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Deduction Modulo implements Poincaré's principle by identifying deduction and computation as different paradigms and making their interaction possible. This leads to logical systems like the sequent calculus or natural deduction modulo. Even if deduction modulo is logically equivalent to first-order logic, proofs in such systems are quite different and dramatically simpler with one cost: cut elimination may not hold anymore. We prove first that it is even undecidable to know, given a congruence over propositions, if cuts can be eliminated in the sequent calculus modulo this congruence. Second, to recover the cut admissibility, we show how computation rules can be added following the classical idea of completion a la Knuth and Bendix. Because in deduction modulo, rewriting acts on terms as well as on propositions, the objects are much more elaborated than for standard completion. Under appropriate hypothesis, we prove that the sequent calculus modulo is an instance of the powerful framework of abstract canonical systems and that therefore, cuts correspond to critical proofs that abstract completion allows us to eliminate. In addition to an original and deep understanding of the interactions between deduction and computation and of the expressivity of abstract canonical systems, this provides a mechanical way to transform a sequent calculus modulo into an equivalent one admitting the cut rule, therefore extending in a significant way the applicability of mechanized proof search in deduction modulo.
Document type :
Conference papers
Complete list of metadatas

Cited literature [23 references]  Display  Hide  Download

https://hal.inria.fr/inria-00115556
Contributor : Guillaume Burel <>
Submitted on : Monday, February 26, 2007 - 3:22:48 PM
Last modification on : Thursday, January 11, 2018 - 6:19:58 AM
Long-term archiving on : Friday, November 25, 2016 - 2:32:52 PM

Files

bk_LFCS.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Guillaume Burel, Claude Kirchner. Cut Elimination in Deduction Modulo by Abstract Completion. Symposium on Logical Foundations of Computer Science LFCS'07, Sergei Artemov, Jun 2007, New York, United States. pp.115-131, ⟨10.1007/978-3-540-72734-7_9⟩. ⟨inria-00115556v3⟩

Share

Metrics

Record views

237

Files downloads

129