Genetic Programming for Kernel-based Learning with Co-evolving Subsets Selection

Christian Gagné 1, 2 Marc Schoenauer 1, 3 Michèle Sebag 3 Marco Tomassini 2
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, Polytechnique - X, CNRS - Centre National de la Recherche Scientifique : UMR7161
Abstract : Support Vector Machines (SVMs) are well-established Machine Learning (ML) algorithms. They rely on the fact that i) linear learning can be formalized as a well-posed optimization problem; ii) non-linear learning can be brought into linear learning thanks to the kernel trick and the mapping of the initial search space onto a high dimensional feature space. The kernel is designed by the ML expert and it governs the efficiency of the SVM approach. In this paper, a new approach for the automatic design of kernels by Genetic Programming, called the Evolutionary Kernel Machine (EKM), is presented. EKM combines a well-founded fitness function inspired from the margin criterion, and a co-evolution framework ensuring the computational scalability of the approach. Empirical validation on standard ML benchmark demonstrates that EKM is competitive using state-of-the-art SVMs with tuned hyper-parameters.
Type de document :
Communication dans un congrès
Th. Runarsson et al. PPSN'06, Sep 2006, Reykjavik, Springer Verlag, 4193 (4193), pp.1008-1017, 2006, LNCS
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00116344
Contributeur : Marc Schoenauer <>
Soumis le : dimanche 26 novembre 2006 - 11:45:19
Dernière modification le : jeudi 11 janvier 2018 - 06:22:14
Document(s) archivé(s) le : mardi 6 avril 2010 - 23:24:31

Fichiers

evokern-paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Christian Gagné, Marc Schoenauer, Michèle Sebag, Marco Tomassini. Genetic Programming for Kernel-based Learning with Co-evolving Subsets Selection. Th. Runarsson et al. PPSN'06, Sep 2006, Reykjavik, Springer Verlag, 4193 (4193), pp.1008-1017, 2006, LNCS. 〈inria-00116344〉

Partager

Métriques

Consultations de la notice

274

Téléchargements de fichiers

842