J. Shawe-taylor and N. Cristianini, Kernel Methods for Pattern Analysis, 2004.
DOI : 10.1017/CBO9780511809682

J. R. Koza, Genetic programming as a means for programming computers by natural selection, Statistics and Computing, vol.4, issue.2, 1992.
DOI : 10.1007/BF00175355

R. Gilad-bachrach, A. Navot, and N. Tishby, Margin based feature selection - theory and algorithms, Twenty-first international conference on Machine learning , ICML '04, pp.43-50, 2004.
DOI : 10.1145/1015330.1015352

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2001.

K. Yu, L. Ji, and X. Zhang, Kernel nearest neighbor algorithm, Neural Processing Letters, vol.15, issue.2, pp.147-156, 2002.
DOI : 10.1023/A:1015244902967

N. Cristianini and J. Shawe-taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 2000.
DOI : 10.1017/CBO9780511801389

M. A. Potter, D. Jong, and K. A. , Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents, Evolutionary Computation, vol.8, issue.1, pp.1-29, 2000.
DOI : 10.1162/evco.1993.1.2.127

W. D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure, Physica D: Nonlinear Phenomena, vol.42, issue.1-3, pp.42-228, 1990.
DOI : 10.1016/0167-2789(90)90076-2

Y. Freund and R. Shapire, Experiments with a new boosting algorithm, Proc. of the 13th. Int. Conf. on Machine Learning, pp.148-156, 1996.

D. Newman, S. Hettich, C. Blake, and C. Merz, UCI repository of machine learning databases, 1998.

C. Gagné and M. Parizeau, GENERICITY IN EVOLUTIONARY COMPUTATION SOFTWARE TOOLS: PRINCIPLES AND CASE-STUDY, International Journal on Artificial Intelligence Tools, vol.15, issue.02, pp.173-194, 2006.
DOI : 10.1142/S021821300600262X

R. Collobert, S. Bengio, and J. Mariéthoz, Torch: a modular machine learning software library, IDIAP, 2002.

T. Howley and M. G. Madden, The Genetic Kernel Support Vector Machine: Description and Evaluation, Artificial Intelligence Review, vol.43, issue.14, pp.3-4, 2005.
DOI : 10.1007/s10462-005-9009-3

D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma et al., Genetic Algorithms and Support Vector Machines for Time Series Classification, Applications and Science of Neural Networks, Fuzzy Systems, and Evolutionary Computation V, pp.74-85, 2002.
DOI : 10.1117/12.453526

F. Friedrichs and C. Igel, Evolutionary tuning of multiple SVM parameters, Neurocomputing, vol.64, pp.107-117, 2005.
DOI : 10.1016/j.neucom.2004.11.022

K. Weinberger, B. John, and S. Lawrence, Distance metric learning for large margin nearest neighbor classification, Neural Information Processing Systems, pp.1473-1480, 2005.

C. Gathercole and P. Ross, Dynamic training subset selection for supervised learning in Genetic Programming, In: Parallel Problem Solving From Nature, pp.312-321, 1994.
DOI : 10.1007/3-540-58484-6_275

D. Song, M. I. Heywood, and A. N. Zincir-heywood, Training Genetic Programming on Half a Million Patterns: An Example From Anomaly Detection, IEEE Transactions on Evolutionary Computation, vol.9, issue.3, pp.225-239, 2005.
DOI : 10.1109/TEVC.2004.841683