A Framework for Adaptive Collective Communications on Heterogeneous Hierarchical Networks

Luiz Angelo Steffenel 1
1 ALGORILLE - Algorithms for the Grid
INRIA Lorraine, LORIA - Laboratoire Lorrain de Recherche en Informatique et ses Applications
Abstract : Today, due to the wide variety of existing parallel systems consisting on collections of heterogeneous machines, it is very difficult for a user to solve a target problem by using a single algorithm or to write portable programs that perform well on multiple computational supports. The inherent heterogeneity and the diversity of networks of such environments represent a great challenge to model the communications for high performance computing applications. Our objective within this work is to propose a generic framework based on communication models and adaptive techniques for dealing with prediction of communication performances on cluster-based hierarchical platforms. Toward this goal, we introduce the concept of polyalgorithmic model of communications, which correspond to selection of the most adapted communication algorithms and scheduling strategies, giving the characteristics of the hardware resources of the target parallel system. We apply this methodology on collective communication operations and show that the framework provides significant performances while determining the best algorithm depending on the problem and architecture parameters.
Type de document :
Rapport
[Research Report] INRIA. 2006, pp.29
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00116897
Contributeur : Rapport de Recherche Inria <>
Soumis le : jeudi 30 novembre 2006 - 10:04:45
Dernière modification le : mercredi 14 février 2018 - 16:54:02
Document(s) archivé(s) le : vendredi 25 novembre 2016 - 13:16:08

Fichiers

RR-6036.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00116897, version 3

Citation

Luiz Angelo Steffenel. A Framework for Adaptive Collective Communications on Heterogeneous Hierarchical Networks. [Research Report] INRIA. 2006, pp.29. 〈inria-00116897v3〉

Partager

Métriques

Consultations de la notice

266

Téléchargements de fichiers

130