Perceptual Learning and Abstraction in Machine Learning : an application to autonomous robotics

Nicolas Bredeche 1, 2 Zhongzhi Shi 3 Jean-Daniel Zucker 4
1 TANC - Algorithmic number theory for cryptology
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR7161
Abstract : This paper deals with the possible benefits of Perceptual Learning in Artificial Intelligence. On the one hand, Perceptual Learning is more and more studied in neurobiology and is now considered as an essential part of any living system. In fact, Perceptual Learning and Cognitive Learning are both necessary for learning and often depends on each other. On the other hand, many works in Machine Learning are concerned with "Abstraction" in order to reduce the amount of complexity related to some learning tasks. In the Abstraction framework, Perceptual Learning can be seen as a specific process that learns how to transform the data before the traditional learning task itself takes place. In this paper, we argue that biologically-inspired Perceptual Learning mechanisms could be used to build efficient low-level Abstraction operators that deal with real world data. To illustrate this, we present an application where perceptual learning inspired meta-operators are used to perform an abstraction on an autonomous robot visual perception. The goal of this work is to enable the robot to learn how to identify objects it encounters in its environment.
Type de document :
Article dans une revue
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Institute of Electrical and Electronics Engineers, 2006, IEEE transactions on systems, man and cybernetics, Part C: applications and reviews, 36 (2), pp.172-181
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00116923
Contributeur : Nicolas Bredeche <>
Soumis le : mardi 28 novembre 2006 - 17:38:14
Dernière modification le : jeudi 10 mai 2018 - 02:06:59
Document(s) archivé(s) le : mardi 6 avril 2010 - 19:33:46

Fichier

bredeche06ieeeTSMCC_draftFinal...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00116923, version 1

Collections

Citation

Nicolas Bredeche, Zhongzhi Shi, Jean-Daniel Zucker. Perceptual Learning and Abstraction in Machine Learning : an application to autonomous robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Institute of Electrical and Electronics Engineers, 2006, IEEE transactions on systems, man and cybernetics, Part C: applications and reviews, 36 (2), pp.172-181. 〈inria-00116923〉

Partager

Métriques

Consultations de la notice

455

Téléchargements de fichiers

422