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Abstract— We consider the problem of on-line value function function; the drawback is that we generally lose formal fsoo

estimation in reinforcement learning. We concentrate on te of convergence but we have experimental evidences that this
function approximator to use. To try to break the curse of approach is appealing

dimensionality, we focus on non parametric function approx ] . )
mators. We propose to fit the use of kernels into the temporal ~ However, the reinforcement learning (RL) problem is not
difference algorithms by using regression via the LASSO. We a pure regression problem: the data to learn from are not
introduce the equi-gradient descent algorithm (EGD) whichis  (observation, response) couples. In RL, the response is the
a direct adaptation of the one recently introduced in the LARS o, following an action and we do not want to learn the
algorithm family for solving the LASSO. We advocate our chote f . h - h | i

of the EGD as a judicious algorithm for these tasks. We presan €tUrn function. Furthermore, in RL’“ we have ’t,o earn orelin
the EGD algorithm in details as well as some experimental redts. and we do not expect the set of all “examples” to be available
We insist on the qualities of the EGD for reinforcement learring.  at once: indeed, the agent has to act and to learn to act while
acting. Another noteworthy point is that there is no lack of
data samples; to the opposite, we typically face millions of

_ _ . data points to learn from. That leads to serious computakion
Whether value-function based, or direct policy searchthasegsts.

the approximation of a real function is a key component
of reinforcement learning algorithms. To this date, vasioqm
approaches have dealt with that point which fall into twodato
categories, either parametric, or non parametric. Param
means that we aim at approximating a certain functfoby
f= g(>>, Bidi) where thep’s are givena priori (the 5's are
real weights to be adjusted/learned); furthermore, whisrthe
identity function, the approximation is said to be lineagsn
parametric approximators are linear, a noteworthy exoapti
being neural networks using a non linear activation fumctio
In non parametric approximations, tkiés are defined on the
fly, that is, while learning is being performed.

Most of the time, parametric approaches have been us

I. INTRODUCTION

In this paper, we are interested in non parametric approx-
ation of the value function, being performed on-line. We
consider non parametric rather than parametric approaches
®hecause we want sparse solutions. The method relies on
minimizing a cost operator, theeast Absolute Shrinkage and
Selection Operator (LASSOyvhich is made of two terms,
the error term £) and the regularization (reg) term, the two
being combined by way of a regularization constan: Areg.

A lets us tune the importance of sparsity w.r.t. the error.
This minimization was only approximated by costly heucisti
until [4] proposed an algorithm that computes the entirdnpat
of regularization while keeping the computational costyver

. : . ) F&asonnable [4]; this algorithm has been initially used for
tiling, CMAC, and radial basis function (RBF) networks [15]variable selection, and then for regression [7]. We wishge u

[13], Gaussian processes [5], neural networks [14], [3] Aflis algorithm as a function approximator in RL problems.

well-known. Parametric approaches suffer from the fact tha Section 2 his algorithm i d quisedn th
basis functions are setpriori in the state space so that ther ection presents'F IS algorit m Into a renewe gwseﬂn_t
3 ework of regression. We provide a simpler interpretati

is no guarantee that they are set where they are really nge )  of its behavi he LASSO and hasize th
this eventually leads to a large number of basis functioimsgpe and proof of its behavior w.r.t. the and emphasize the

used, while only a small number of them would be enoudﬁlations between this algorithm and the classical scheime o
for a good approximation. One very attractive property (grad|ent descent.
parametric approaches is that they are often amenable to §ecti0n 3 introduces kernel versions of three notorious tem
formal analysis of their capabilities, such as the converge Poral difference algorithms, namely TB) Least-Squares TD,
of the algorithm. and residual-gradient TD. These kernelizations are aebiev
There are also non parametric approaches. [11] is oneldfeémphasizing the relations between Rpand the gradient
the earliest attempt in the field. More recently, there hambedescent scheme, and providing a way to ensure sparsity
several efforts in this direction, variable resolutiondgri9], through a sequence of independant equi-gradient descents.
[10], locally weighted regression [1], gaussian procegs¢s Section 4 briefly states the benefits awaited from these
and sparse distributed memories [12] are well-known. Thagorithms, and section 5 shows some experimental evidence
keypoint here is to obtain a sparse approximation of tlo# these benefits.



Il. LASSO by minimizing its pseudo-L1 norm: the L1 norm of =
A. Linear function approximation ity |wil _[4]' .
For a given compromise parametgrthe problem can be

Linear approximation consists in estimating a functibn  t5rmalized by the LASSO equation:
X — R (X being an arbitrary set) as a linear combination of

pseudo-variates: . _ : 2 - ‘

X is mapped into amm-dimensional space by a set ofm W' =argmin |y - @wl, + )\Z; il @
fixed basis functiong¢; : X — R}, and the search spadé ) = ) .
for the estimate is restricted to linear functions oyer The weights on each feature are equally penalized: a weight
Flw,z) = S widi(x) on any feature increases the regularized loss functionday

This restriction permits the use of simple and convergeffgardiess of how much it decreases it through the squared
algorithms. Howevery has to be chosen so that the bed@sidual. So, to do a “fair” regularization (without arkitity
choice for f in H is sufficiently close tof, with respect to Penalizing some features more than others), the featucescsh
both the empirical and real risk. It has been shown (BarroRifve @ similar effect ofty — ®w|f;, Wh|cihlcan be achieved by
that for any choice ofn fixed basis functions, the error ofscaling each feature by (3" | ¢(z;)?) 2. The scale factors
the approximation has a worst-case lower boun@jifi2)) can also be determined analytically fi§ ¢(«)?da.
whered is the dimension oft. This emphasizes the necessity (1) cannot be solved straightforwardly, mainly because the
of using non-parametric methods whetis high-dimensional. regularization termp_;”, |w;| is not differentiable. However,

Among them, kernel methods escape this issue by udstifications and connections between several heurigtic r
ing the representer theorem: given a kernel function ~gression algorithms were studied in [4], and it was shown
X x X — R, a high (typically infinite)-dimensional spacethat a slight modification of a basis pursuit algorithm could
¢ is used, corresponding to the following infinitely denséecursively and exacltly solve the LASSO. The recursion
grid: {¢ = k(z,-),2 € X}, and the representer theorenS done onX and computes the Pareto front of this dual

asserts that the best choice férw.rt. the empirical risk, OPtimization problem, from\ = +oc to A = 0. One major
given samples ofz1, ..., z,}, uses only the basis functionsbenefit is that the choice fok does not have to be made

E(xy,), ... k(zn, ). priori, or.by some cross-yalidatioq procgdure; it is dpne on the
Achieving even more sparsity over the basis functions fly, considering relevant mforma‘uor_\s like the empiricak$ _
useful, not only for computational issues, but especialy fO" the number of features used. This does not come at a high

reducing the real risk by avoiding overfitting. This has beefPSt, as will be shown below. _

studied in the regularization theory ([17]). SVM regressio 1he family of algorithms studied in [4] is known under
achieves sparsity by means equivalent to adding a regatarifn® NameLARS for Least Angle Regression Stagewise/laSSo.
tion term to a loss function ([6]). Gaussian process regpass [N the next subsection, the recursive LASSO procedure is pre
treats sparsity at the same level as the representer theoré@fted. A demonstration that is simpler and more concise tha

considering only the sample points, independently of tfB€ original one is provided. The following subsection esg®
sampled values ([5]). a practical algorithm and considerations on its complexity

B. LASSO C. Solving the LASSO by a recursion over

The Least Absolute Shrinkage and Selection Operatort€t US consider the Pareto front, mularization pathf,
(LASSO, [16]) aims at characterizing a linear function— R that is the set of solutions for all possible valueshof
that both reduces an empirical risk and is sparse, with otspe m
to a value) € R* that sets the relative importance given to? = {wx =argmin [y — ®wll; + A> |wi|, A€RT}
these two criterions. The basis @f can be fixed arbitrarily, ¢ i=1
using the representer set of a kernel, or the union of suchThere exists)\, such that ifA > )o, the solution of (1)
sets for several kernels, or any finite set of featuf@si € consists inw = 0: any weightw; on any featurep; would

L,...,m}. increase the regularization term more than it would redhee t

Let us note: loss.

e x=(x1,...,2,)" the vector of sample points. Let us divide the path into the largest intervals in which

e y=(y1,...,yn)" the vector of sampled values gfat the solutions have a constant sidi\, . .., A, = 0} such that
these points. . oVic0,..., 1,

c 0 X =0 o) = (1(2),.. ., bm(2)) { Ai 2 Ayt )

o flw,z)=¢x)Tw VA, N €N, Ai1 [, sgn(wy) = sgn(wy)
L (f( ) ];( ))T — & e p IS minimum

* y,_ T- -0 JAFL)) = Tw (1) being convex w.r.t. botkw and ), this path of solutions
with @ = (¢(21), ..., d(zn)) is continuous: all components of are continuous W.r.t.

Let us consider the squared-lossAfunction for minimizin§o contiguous intervalg\;_1, ;[ and |\;, A;+1] differ only
the empirical risk. The sparsity of can be constrained on a single component ab: either it has a non-zero value



in the first interval and is zeroed at (and beyond) after a is not valid anymore and this feature gets activated in the ne
continuous decrease (de-activation of a feature), or iei® z interval.

in [A;i—1, Ai+1] and non-zero in\;, \;+1[ (activation). In the  An active featurep; is de-activated if:

cases —of probability 0— where activation/de-activatidn o

)\.
several features occur at the same point, the intervals aave A\ = —Wg /
length O: \; = A\;11. wj
In these open intervals, the sign vectorwtbeing known,  An inactive featureg; is activated if, as well as for the
one can: active features, the gradient of the LASSO loss functiont.w.r

« prune the problem of inactive featuregf(w;) = 0): if w; equals 0. Again, the (non-zero) sign ©f in |11, Aj2]
they are not involved in the solution, they might as weibk considered and generalized to the boung,, at whichw;
have never existed. Notations will remain the same fag still 0. Let us note this sigs;.
the pruned vectors and matrices.

« solve (1), using the fact that |w,| is differentiable w.r.t. ¢! (y - 2w - @dw) = Ajsi +dAs;
the prunedw in the interval.

One can actually consider the closed intervals, for thetfanc = ¢ (Y - ‘I’W(Aj)) — dA\p; dw = \;s; + d)s;
sgn is still differentiable if it takes a zero value at a bound of
the interval. o; (y — @w(kf)) — 5\

The sequencé);) and the signs of the elements of is = dA= T

. ; ) &b, Pw + s
recursively determined as follows: v
The objective being to find\;; < A;, Ajy1 is given by

start of the recursion: Aj — dX with dA being the least positive or zero of the above
[Ao, A1] involves only one feature;, which has a weight; = quantities:
0 at \p. This weight satisfies O

—w,;

{if ¢; active then
q’)?(yf@wo‘j))fs);j

2
Olly - ®wll} , Ol

|
=0 ; _
E Oug else P with s = 41,
1€1,...,m}

At )\g, this gives di'y = dosgn(w;).
Note that heresgn(w;) is the sign thatv; has in the open Two restrictions must be made to that set: a feature thatisas |
interval: this equation only generalizes what stands imthen been activated at; must not be considered for de-activation,

interval to its lower bound. - and one that has just been de-activated must not be congidere
So )\, andi are given by{ %\o = max; |¢; YT| for ac.tlvatlon: they would cand@ate for an immediate cheang
. i = arg max; |¢; y| of their status, being at the frontier of two intervals wherey
recursion: have different status.

Let us suppose that; ands = sgn(w) in JAj: Aj1l @re — This gives both;,; and the change afgn(w): sgn(w;)
known, as well as the solution at (w*+)). Let us solve (1) either becomes 0, or goes from O to 1, or from O to -1.
for X in the interval, using the variable®\ = )\; — A and

dw = w® — wPi): D. The equi-gradient descent algorithm
dly - q,ng Y, |wil Let us first note the similarities and differences between
0w +A 9 =0 the gradient descent method and the method exposed above,
which is therefore baptized heegjui-gradient descent
o' (y — M) — ‘I’dw) = Ajs —dAs Gradient descent consists in a sequence of steps in which
each weight is modified proportionally to its gradient on the
@' (y - ‘iw(’\")) —Ajs —® T ®dw = d)s residual. In the linear regression problem, each step (f ra
¥ 1) consists in:
-
w(A):w(Aj)+()\j_/\) (<I>T<I>)_ls we—w+0® (y— dw)
N If the o;’s are sufficiently small and decreasing, each change
w of weights approximates:

This indicates that the solutions in the interval are linear |
w.r.t. the decrease of. The direction of the change @ is - _ P SIIZ o+ = Sw:)2
w o w - arg min |y — B(w + 8w)3 + - D (0w)

w = (®"®) s and the factor i§\; — \). This allows to

vi=1

compute the poind;; easily: and the sequence asymptotically minimizes:
It is the first point where whether one weight is zeroed, m
and by definition another interval begins, or (1) admits a ly — @wug_i_/\z(wi)z

solution involving one more feature, in which case the pngni =



with Ag < X < lim;_o ai Ao being the threshold beyond

which
m Algorithm 1: Equi-gradient descent
arg min ||y — ®w|> + A (w;)? = arg min ||y — ®w|> -
’ zz; ’ for i =1 tomdo ?W—(@(Il)a---,@(xn)f
(y17 cee 73/77,)

The equi-gradient descent only modifies weights that have (); we (), &
the highest gradient on the residual. This modification islena ¢ — arg max ‘g{)-Tres‘
in the direction that would lead the closest to the target, in b |7
contrast to its approximation in gradient descent. Thisalion A — ¢'res
has the property to keep the gradients equal, and allows the < bgﬂ(¢ res)
analytical computation of the length of the step: it stopthat ~ todo < activate ¢ with sign s
point where a new feature has the same —highest— gradient oWhile not stopping criterionand not todo=done do

the residual as the active ones. switch todo do
The practical algorithm is exposed in Alg. 1. The com- caseactivate ¢ with sign s
plexity of an iteration of the loop is O(nm): the most complex
operation is therrg min of two functions of two dot-products =1 @ |¢
(O(n)), in1 the set of inactive feature®)(m)); the update of
‘I>T<I>) is only O(na) wherea is the number of active s | s
features.
The number of iterations has been empirically observed to 5
be O(a?), a being the final number of active features when
stopping the equi-gradient descent. A semi-formal exglana we | @
holds in the following facts: 0
« L1 regularization being strongly correlated to sparshig, t casede-activate j-th active feature
number of actives features is quasi-monotonous through- remove;-th element of®, w, s
out the iterations, end -1
« a configuration (the set of active features) can only occir  dw « 'd s
in a single iteration, dres «— ®ow

« the number of selected configurations of sizis proba-2 3 (dA4, ¢, ) — (min, arg min) g inactive {%}
bly logarithmic in the number of possible configurations

. . Ao res
(2P), and thusO(p), which makes the number of itera- (dA—, ¢_) « (min, arg min)g inacive [l:frdres}

tions O(3>)_, p) = O(a?).

v

0

>0
o, j i i i
(dXo, j) < (min, arg min)jc1..nb act. features 7.,

>0
I1l. USING EQUFGRADIENT DESCENT IN TEMPORAL d\ «— min(dAy,dA_, dXg)
DIFFERENCE LEARNING 2 if d\ undefinedhen
todo «— done

A. Sparse Least Squares TD

— A

The Least-Squares TD algorithm ([2]) is a policy evaluation ~ €Is€ ifdA = dA, then
scheme. Its principle is to directly solve the system of Belh todo — activate ¢, with sign +1
equations on a set of samples obtained either from trajestor else ifdA = d\_ then
or in any other way. The system is solved by minimizing the to.do — activate ¢_ with sign -1
sum of the squared Bellman residuals: elset I:id)<\— - dde/?oaég\?:te _th active feature
Let 7y be the parametric approximator of the value function A (_0/\0_ )\ J
of the policy to be evaluated.

dX * d
Let si,...,s, be the sampled states andy, = fe(s_ﬁr—gs—Z)\c:dres

A . T
(09(s1), - -, 09(51)) _ _ end
Let B be the Bellman matrix connecting states related to —; (®7®) " should not be computed at each iteration of the loop,
each other by a Bellman equation; for example, if states come but stored and modified iteratively, using block matrix irsien.

from a single trajectory and a fixed discount factois used: 2: lexpression],, means that only positive values are considered,
1 —x 0 which means thatrg min, [f(x)]>¢ is undefined iff(x) takes no
B— 1 —y positive value.

3: As explained in II.C, themin —arg min searches must not
0 consider the feature that has just been [de]activated.

The vector of Bellman residuals is — BV wherer is the
vector of rewards sampled between connected states. LSTD
computesarg min, ||r — B¥]|3




In the case of linear approximators (including kernel metiproblematic, since the non-linear parameters are not riamer
ods) wherei,, = ®w, the application of equi-gradient descenthey consist in the choice of kernel centers (sampled ppints
is immediate: it can be used as is on the following LASS@Given the previous consideration on how T(relates to
problem: regression by gradient descent, an algorithm is proposed in
minimize arg min, |[r — ®'w||3 + A Y, w; with ' = B®. the following that permits the use of TB) with a kernel

The main benefit is to obtain a sparse solution, which bo#fpproximator.
saves computational time and avoids over-fitting. One can th The principle of TDQ) on linear approximators can be sum-
use dense grids or kernel features more easily. marized the following way: after a sampled trajectory, apie
B. Kemnel TDQ) of regression is madg to apprOX|mi';1te the estimated rg3|dual

_ ) ) v — ®w by a corrective termPdw. v(z) = >, w;p;(z) Is

TD()), when used for evaluating a fixed policy, uses thgen updated tov'(z) = 3, wii(z) + 3, dwidi(z). The
following scheme: considering an estimation of v and & |inear parameters (weights) remain the same (in the sease th
trajectorysg — s1... = sy, they apply to the same feature set) throughout the suceessiv

v(s0) = r1 +yu(s1) gradient de_scent_steps. _
. . The key idea is to replace the gradient descent step per-
< v(s0) = Do(s0) = r1 = Ba(s0) +7v(s1) formed after each trajectory by an equi-gradient descent.
Assuming that g(s;) =~ w(s;), the residual at The direct application of this would be to perform after each
s0 = v(s0) — Da(s0) is estimated byr; — dg(so) + Y0g(s1) trajectory an equi-gradient descent that approximatgs=
(principle of value iteration). v — ®w by ®’w’, the features i’ being a kernel centered
The same reasoning is applied to estimate it by on a selection op visited statesv(z) = ;" | w;$; (=) would
71 412 + 7?06 (s2) — Do (s0) Eff]lzcvtf):al':up:jeastiiitr?l@) =i wz;q%(:v)JrZ?lﬂ”H wigi(x)
g indexed). This scheme could be used with
or 1y +7ra+ 773 + v 09 (s3) — Ba(so) any kernel method, and more generally any regression method
The trivial drawback is that although feature selection rbay
_ _ . accurate in each regression, no pertinent selection is made
These efst|mat.es are averaged with coefficients such thatﬂ%ughout the whole algorithm: features just add up thhoug
final estimate is: the —possibly very long— sequence of trajectories.
, To provide “global” feature selection, the first key is to in-
v(s0) = B (s0) = Z(M)Z H(ri 4o (s:) = Do (si-1)) cluder;eaturesgthat occur in the current estimriate thgset of
¢ candidates for approximating the residual. The approxonat
v(s;) —Dg(s;) are estimated the same way foF 2...n— 1.  of the residual can then use these features (as lineah)TD(
Using a matricial formulation, TDY) considers that: does) as well as new features centered on visited states. Thi
1 Ay (\y)?...7 can be done straightforwardly with equi-gradient desctent,
1 M\ ... | itconsiders any arbitrary set of candidates features.
res=v—vVy~L(r—B¥y), withL= 1 . Global sparsity would still not be satisfyingly ensured,
] because new features would remain more attractive than the
0 K others, as they are centered on the considered states., Atmin
and performs the following update: flexibility of equi-gradient descent provides a solutioimce it
e penalizes the use of features through the sum of their waight
0 —0—a—l1 (r — By) one can penalize the new features more than the others by

90 including coefficients in the penalization term. The LASSO
which is equivalent to consideringes = L (r — B¥y) as a problem is rewritten as:

(fixed) estimation of the residual at the points sampled feom

n

m
trajectory, and performing a gradient descent step to mz@m w* =argmin |y — ‘I>w||§ A Z ilwil
|6%9 — 894||3 . The form ofres allows to perform the update i1

sequentially, using the computational trick of eligilyjiltraces. The change induced in the equi-gradient algorithm is just to
TD(}) is used for policy improvement by evaluating &eplace the signs = +1 by «;s.

moving policy — greedy w.rt¥y. The difference is that The last point is that when the equi-gradient descent gets

the estimated error is™ — ¥7, using the asumption thatthe final weight of a feature already occuringiirto zero, it

0F (s) ~ vg’(s), wherer and=’ are respectively the previousshould be taken into account by explicitely de-activating i

and current policies. Concerning the stopping criterion, performing only ongste
This algorithm and derivates like Q-Learning and SARSAoes not seem interesting, as it would just select one featur

have been widely used with linear approximators. It has alsach time. One natural possibility is to stop when the regidu

been used with success with neural networks, by propagathmgs been reduced by a given ratio. Empirically, a ratio of 0.8

the updates on linear hyper-parameters to the non-linezs ore. |L(r — Bdw) — ®'w’| < 0.8|L(r — B®w)|, seems to

by backpropagation. The use of kernel methods seems mensure good and stable performances.



A kernel TD(\) algorithm is summarized in Alg. 2. It could and finally estimates, as a linear combination of the solutions
be used with any kernel method as long as it allows to includé the first two equations.
the kernel centered on arbitary points as additional catded  The residual-gradient TD aims at solving the system di-

and to penalize them less than the “natural” ones. rectly. The problem of its uncompleteness, which is somehow
the motivation for the TDX) scheme, is escaped by the implicit
Algorithm 2 : Equi-gradient kernel TDX) regularization in gradient descent, which implicitelyaiethe
/+ o is defined by a set of weighted current estimat@ as a Bayc_esian prior for the next. _
features {(wi, ¢} ny _T_he_ practical qn‘feQrence is th_at, as one attempts to d_yec_tl
b} m|n|m|/ze lr — BB\I;QHQ, the qradlent des_cent steps consists in
repeat 0 - 0 = 0 — a“5e" (.r — BV")' A possible drawback is that
perform a trajectorysy — s ...s, using a greedy this being an approximation of
policy ;o OBV N
perform an equi-gradient descent with 0 =0-a 06’ (r = BY)
« targetL(r — BY) it may be less accurate than the one made inXjibecause
« candidate features the ones usedvifpenalized  the Bellman operator increases the variance.
with o < 1) and {k(s;, )} penalized witho: = 1 Using the same principle as in kernel TY)( one can
« stopping criterion: the reduction of the residual perform after each episode an equi-gradient descent on the
by a given ratio following LASSO:

include the result iy

« remove features with weight taken to O

minimize [[r — B(®w + 'w’)[|5 + A > asluw]]
« modify weights of features used in the previous '

estimate and modified by the descent where ®’ includes both the features & and the new ones
. add new weighted features centered on sampled states, anddh's penalize new features
until % stationary more than the other ones.

IV. BENEFITS

C. Kernel residual-gradient TD The most obvious benefits of the algorithms exposed above
As reminded above, TD) uses averages of temporal dif-2re the ones _associated vyith kernel r_’nethqu: they proyide ad
ferences to estimate a fixed residual. The Bellman equatiof@tages of linear approximators while being non-parametr
relating sampled states are used to estimate independgetsta thus less subject to the curse of d|mer_15_|0nallty. Other fitsne
on each state and then forgotten. One can see this as@RRear that are related to the genericity of the LASSO for-
empirical way to mix all2” Bellman correlations betweenmulation and the precision of its resolution by equi-gratie
states in order to estimate (as opposed to value iterationdescent.
which only focuses on correlations between states and thgir precision
successor).
An alternate way is to directly aim at solving the system
of Bellman equations, which expresses all correlationss iEh CBwl? 4\ - N2
the scheme used in LSTD andresidual-gradient TO{[8]), as ly wll + Z(wz)
opposed to the originalalue-gradienfTD()). Let us consider =t )
a simple example, with a 3 states trajectory. The Bellmdly means of numerous small steps where the derivate of

Gradient descent minimizes

system is: the loss function is considered constant. In Ap(only one
4 v — v =0 step is performed per trajectory or, turning this anothey,wa
ro+ v — v =0 the residual is witnessed on new points after each step. This

explains the so-called “waste of samples” in this algorithm

Value iteration (TD(0)) approximately solves this by In equi-gradient descent, the exact derivate is used, lienefi

{ T+ v — 71:}1 =0 ing from its piecewise linearity, and the lengths of the stage

re +v1 — iz =0 determined exactly. This allows to go further in the updates

TD()\) adds the combined equation: in a safe way, and is especially appealing when using relidua
4 v — v =0 gradient.

1+ T2+ v — 7202 =0 B. genericity

ratvr—qv2 =0 Unlike traditional kernel regression methods, equi-geatli

It then approximates the system by descent does not rely on the Mercer or positive-definiteness
r1+vg— 01 =0 properties of a single kernel. It just considers an arbjtrar
4y +Fvg — Y202 =0 finite sety of candidate features. This does not mean it misses

ro +v1 — Y02 =0 some properties of such a kernel: when used on the feature
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set{k(xo,"),...,k(zn,-)}, it performs the same task: find a ]
suitable compromise between data-fitting and sparsity tésk 30000 |- 1 700
being achieved in very similar ways.

This allows the use of multiple kernels, typically Gaussian
kernels with various bandwidths. One can also use kernels én,,,, |
projections of the state space on some of its dimensions:
s = (5@, s®)T € R2, ¢ can includek (s, ), k(s ), .. .

Another interesting possibility is to use kernels that expl
the symmetry in the dynamics and value function of the MDP:
if the state space& = R? and it is known thatys, v(s) = 5000 -
v(—s), a kernelkgym (z,2") = k(z,2") + k(z, —2’) extends 355 ‘ ‘ ‘ ‘ .
the neighborhood of a point w.r.t. the approximated functm 0 * 100 10 200 20 %00

episode #

the neighborhood of its opposite. Such a kernel causesuserio 1— 077 0,625

erturbations around 0 in a grid-based RpP6r in Gaussian
P 9 DO ig. 1. Influence ofx on the number of active features (3 thick lines), and

Process TD, W_hiCh is not th_e Cf?‘se with equi-gra_ldient Tlﬁn the cumulated reward (3 thin lines), for three values.of\Ve use a single
Note that there is no other satisfying way of exploiting sach Gaussian kernel of variance 0.15.
symmetry; projecting on half the state space does not preser
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continuity across the separating hyperplan. —
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V. EXPERIMENTS
- 600

Experiments were run on the inverted pendulum problem, e
as described in [3]. 100 independent learning sessions®f 39 | 1%
trajectories were run each time, the trajectories comgjsti
40 transitions of 0.4. The evolution of the quality of the value
function was estimated by running 100 off-learning trajeets

+ 400

active features

15000 [

cumulated rex

4 300

10000 [

and adding received rewards. The same initial states weik us 120
for each experiment. The results are presented in Fig.'s 1-5 swo e 0
and are detailed below. . / | | i

0 50 100 150 200 250 300
A. kernel-TDA4) episode #

015 —— 0.150.170.2

influence of the penalization coefficiemt We first used a
Gaussian kernel of varianéel 5 (the state space being normalfig- 2. This plot compares the performance of kemnel-YD{sing a single
ized d d choi for th lizati ffici kernel function (in red), and using 3 kernel functions (irem). All kernels
ized), and compared ¢ 0'983 or the pena 'Za.'on COEMEEN 516 Gaussian; they differ from their variance.
of features already used in the previous estimate. It has the
expected influence on the number of actives featuresy as
decreases, the number of active features naturally deseas « Equi-gradient kernel TDY) with the same single kernel
which is helpful to tune the computation time. and use of symmetry.
~ The convergence speed and quality are overall similar, btiie |ater shows both fast convergence and better policiss. S
it should be noted that the quality is slightly better with= Fig. 4
0.67, see Fig. 1. _ )
multi kernels: We then used 3 Gaussian kernels of varianc& Kernel residual gradient TD{
0.15,0.17 and0.2. Convergence is a bit faster, and the number Experiments were run to compakernel TDQ) with the
of active features does not change, see Fig. 2. recently developped#ternel residual gradient TDThree ob-
symmetry:We then exploited the central symmetry of th&ervations are noteworthy:

problem (V(z) = V(-x)) by using symmetric features: , The convergence on the pendulum problem is even faster,
Instead of g;(z) = k(zi,z), we setei(z) = k(zi,x) + « the stopping ratio is best set around 0.9 to avoid some
k(l’i, —ZC). This trick is not appllcable in either TD!I with momentaneaous divergences in the po“cy'

gradient descent nor Gaussian Process TD, as it creates dive, contrary to the value-gradient version, the evolution of

gences around 0. With Equi-gradient TD, some momentaneous the number of features shows a fine asymptotic shape

divergences appear when using multi kernels, but it is obus  \hen running a large number of trajectories, as shown in
with a single kernel. The benefits are a faster convergente an  Fig. 5,

the use of less features, as can be seen in Fig. 3.
comparison with TDX) on a grid: We compared the results VI. SUMMARY AND FUTURE WORK

obtained by the following algorithms: We have formulated variants of TD algorithms in which the
» parametric TDK) with gradient descent onlb x 15 grid  gradient descents are replaced by what we called an equi-
of Gaussian bases. gradient descent. The first takes an approximatively good
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Fig. 5. Evolution of the number of features throughout tharriég

Fig. 3. This plots exhibits the difference that is observdiemw one uses trajectories in both kernel TD(0.5) and kernel value-geadiTD.

the symmetry of the problem (in green), or not (in red). Thgoathm uses
a single Gaussian kernel function of variance 0.15.
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