Real-time Vehicle Motion Estimation Using Texture Learning and Monocular Vision

Abstract : High integrity localization system is an important challenge to improve safety for road vehicles. A way to meet the requirements is to fuse information from several sensors, from position and orientation sensors to motion, speed and acceleration sensors. This paper tackles the problem of vehicle motion estimation using monocular vision. A geometric model of the road is used to learn a texture patch in the current image, this patch is then tracked through the successive frames to estimate in real time the motion of the vehicle. The proposed method was assessed using a centimeter accuracy Real Time Kinematic GPS receiver.
Type de document :
Communication dans un congrès
ICCVG, Oct 2006, Varsovie, 2006
Liste complète des métadonnées


https://hal.inria.fr/inria-00117116
Contributeur : Yann Dumortier <>
Soumis le : jeudi 30 novembre 2006 - 12:51:44
Dernière modification le : jeudi 30 novembre 2006 - 14:28:58
Document(s) archivé(s) le : mardi 6 avril 2010 - 19:35:52

Fichier

ICCVG06.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00117116, version 1

Collections

Citation

Yann Dumortier, Rodrigo Benenson, Mikael Kais. Real-time Vehicle Motion Estimation Using Texture Learning and Monocular Vision. ICCVG, Oct 2006, Varsovie, 2006. <inria-00117116>

Partager

Métriques

Consultations de
la notice

769

Téléchargements du document

382