P. Auer, N. Cesa-bianchi, and P. Fischer, Finite-time analysis of the multiarmed bandit problem, Machine Learning, vol.47, issue.2/3, pp.235-256, 2002.
DOI : 10.1023/A:1013689704352

P. Auer, N. Cesa-bianchi, Y. Freund, and R. E. Schapire, Gambling in a rigged casino: The adversarial multi-armed bandit problem, Proceedings of IEEE 36th Annual Foundations of Computer Science, pp.322-331, 1995.
DOI : 10.1109/SFCS.1995.492488

B. Bouzy, Associating domain-dependent knowledge and Monte Carlo approaches within a Go program, Heuristic Search and Computer Game Playing IV, pp.247-257, 2005.
DOI : 10.1016/j.ins.2004.04.010

B. Bouzy and T. Cazenave, Computer Go: An AI oriented survey, Artificial Intelligence, vol.132, issue.1, pp.39-103, 2001.
DOI : 10.1016/S0004-3702(01)00127-8

URL : http://doi.org/10.1016/s0004-3702(01)00127-8

B. Bouzy and G. Chaslot, Bayesian generation and integration of k-nearest-neighbor patterns for 19x19 go, IEEE 2005 Symposium on Computational Intelligence in Games, pp.176-181, 2005.

B. Bruegmann, Monte carlo go, 1993.

T. Cazenave, Abstract Proof Search, Computers and Games, pp.39-54, 2000.
DOI : 10.1007/3-540-45579-5_3

T. Cazenave and B. Helmstetter, Combining tactical search and monte-carlo in the game of go, IEEE CIG, pp.171-175, 2005.

R. Coulom, Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search, Proceedings of the 5th International Conference on Computers and Games, 2006.
DOI : 10.1007/978-3-540-75538-8_7

URL : https://hal.archives-ouvertes.fr/inria-00116992

T. Graepel, M. Goutrié, M. Krüger, and R. Herbrich, Learning on Graphs in the Game of Go, Lecture Notes in Computer Science, vol.2130, pp.347-352, 2001.
DOI : 10.1007/3-540-44668-0_49

A. Kishimoto and M. Müller, A general solution to the graph history interaction problem, Nineteenth National Conference on Artificial Intelligence, pp.644-649, 2004.

L. Kocsis and C. Szepesvari, Bandit Based Monte-Carlo Planning, 15th European Conference on Machine Learning (ECML), pp.282-293, 2006.
DOI : 10.1007/11871842_29

L. Kocsis, C. Szepesvári, and J. Willemson, Improved monte-carlo search. working paper, 2006.

M. Newborn, Computer Chess Comes of Age, 1996.

L. Ralaivola, L. Wu, and P. Baldi, Svm and pattern-enriched common fate graphs for the game of go, pp.485-490, 2005.

R. Sutton and A. Barto, Reinforcement Learning: An Introduction, IEEE Transactions on Neural Networks, vol.9, issue.5, 1998.
DOI : 10.1109/TNN.1998.712192

I. Unité-de-recherche, . Lorraine, . Loria, and . Technopôle-de-nancy, Brabois -Campus scientifique 615, rue du Jardin Botanique -BP 101 -54602 Villers-l` es-Nancy Cedex (France) Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu -35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe -38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Rocquencourt, Domaine de Voluceau -Rocquencourt -BP 105 -78153 Le Chesnay Cedex (France) Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles -BP 93 -06902 Sophia Antipolis Cedex

I. Editeur and . De-voluceau-rocquencourt, BP 105 -78153 Le Chesnay Cedex (France) http://www.inria.fr ISSN, pp.249-6399