
HAL Id: inria-00118167
https://inria.hal.science/inria-00118167v2

Submitted on 2 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mental Representations Constructed by Experts and
Novices in Object-Oriented Program Comprehension

Jean-Marie Burkhardt, Françoise Détienne, Susan Wiedenbeck

To cite this version:
Jean-Marie Burkhardt, Françoise Détienne, Susan Wiedenbeck. Mental Representations Constructed
by Experts and Novices in Object-Oriented Program Comprehension. Human-Computer Interaction,
INTERACT’97, IFIP TC13 Interantional Conference on Human-Computer Interaction, 1997, Sydney,
Australia. �inria-00118167v2�

https://inria.hal.science/inria-00118167v2
https://hal.archives-ouvertes.fr

Interact 1997, Sydney, Australia, July 14-18.

Mental Representations Constructed by Experts and Novices
in Object-Oriented Program Comprehension

Jean-Marie Burkhardt*, Françoise Détienne*, and Susan Wiedenbeck **

* Ergonomic Psychology Group, INRIA
Domaine de Voluceau, Rocquencourt, BP 105,

 78153, Le Chesnay, cedex, France
Jean-Marie.Burkhardt@inria.fr, Francoise.Detienne@inria.fr

** Computer Science and Engineering Department,
University of Nebraska

Lincoln, NE 68588-0115, USA
susan@cse.unl.edu

ABSTRACT Previous studies on program comprehension were carried out largely in the context of procedural
languages. Our purpose is to develop and evaluate a cognitive model of object-oriented (OO) program understanding.
Our model is based on the van Dijk and Kintsch's model of text understanding (1983). One key aspect of this
theoretical approach is the distinction between two kinds of representation the reader might construct from a text: the
textbase and the situation model. On the basis of results of an experiment we have conducted, we evaluate the
cognitive validity of this distinction in OO program understanding. We examine how the construction of these two
representations is differentially affected by the programmer's expertise and how they evolve differentially over time.

KEY WORDS mental representation, situation model, program model, object-oriented programming, program
comprehension, text comprehension, expertise

1. OBJECTIVES
 The object-oriented (OO) paradigm is growing fast in
popularity, but not enough scientific evidence has been
amassed about it. The research that exists is mostly
focused on program design and reuse (see for example:
Détienne, 1995; Pennington, Lee and Rehder, 1995).
Furthermore, there is, as far as we know, no empirical
work on the comprehension processes of OO
programmers. Our objective is to investigate the mental
representations constructed by programmers in the course
of tasks involving the comprehension of software, e.g.,
reuse of parts of past designs and documentation of code.
Previous studies on the comprehension of software texts
were carried out in the context of procedural or functional
languages. Based on the van Dijk and Kintsch's model of
text understanding (1983), Pennington (1987a, 1987b)
developed and tested a model of procedural program

comprehension. One key aspect of the van Dijk and
Kintsch's model is the distinction between two kinds of
representation the reader might construct from a text: (1)
the textbase which refers to what is said in the text and
how it is said and (2) the situation model which
represents the situation which is referred to by the text.
The purpose of this work is to develop and evaluate a
cognitive model of OO program understanding. More
specifically, we will evaluate the cognitive validity of
the distinction between the textbase (or program model)
and the situation model in OO program understanding.
 Section 2 presents our theoretical framework for
studying OO program understanding and our research
questions. In section 3, we present the methodology used
in our empirical study. In section 4 we present and
discuss the results of this study.

2. THEORETICAL FRAMEWORK

2.1. The mental model approach to text
comprehension
 Current models of text comprehension (Johnson-Laird,
1983; Schmalhofer and Glavanov, 1986; van Dijk and
Kintsch, 1983) assume, in addition to the surface form
(or verbatim) representation, two distinct, but
interacting, levels of cognitive representation: (1) the
textbase or propositional representation and, (2) the
situation model or mental model. Level 1 is the
linguistic representation of the text. It is isomorphic
with the text structure and reflects what is contained in
the text at a propositional level, i.e., it represents the
microstructure and the macrostructure of the text. Level 2
is seen as an a-linguistic representation of the text that is
isomorphic or homomorphic with the situation described
by the text. Theory assumes that the propositional
representation is built by mean of automatic processes
from the verbatim representation. The building of the
situation model, by contrast, is optional (Mills, Diehl,
Birkmire, and Mou; 1995). It is produced by inferences
and it makes extensive use of the subject's existing
domain knowledge.

2.2. The mental model approach applied to
procedural program comprehension
 Pennington (1987a, 1987b) adapted van Dijk and
Kintsch's text comprehension model to procedural
program comprehension and tested it empirically.
Pennington distinguished between two different mental
representations which may be built while comprehending
a program: 1) the domain model which is equivalent
to van Dijk and Kintsch's situation model and reflects
entities of the problem domain and their relationships,
and 2) the program model which is equivalent to van
Dijk and Kintsch's propositional textbase and reflects the
text-based representation of the program.
 Pennington argued that control flow and elementary
operations information belong to the program model,
while function and data flow information belong to the
domain model. Her experimental paradigm was to give
subjects a program to read for a limited time and then ask
them questions reflecting different information
categories, presumed to make up the situation and
program models. The correctness of the responses to the
questions then served as an indicator of the nature of the
representation. Her experiments (Pennington, 1987a;
1987b) generally supported the dual model. She showed
that control flow and elementary operations

representations, which make up the program model,
emerge first during program comprehension, perhaps
because the programmer initially segments the
elementary operations of one line or less into larger text
structure units representing control flow. Function and
data flow knowledge, which makes up the domain (or
situation) model, emerge later with continued processing
of the program.

2.3. Taking into account the OO nature of
programs and the size of programs
 There are several limitations to this approach related to
the procedural nature of the languages used by
Pennington and to the small size of the program she
used. Pennington conducted her experiments with
procedural languages and she did not examine at all
representations about objects or even data structures.
However, objects are central entities in OO programs and
the construction of the representation of objects should
be taken into account in a model of OO program
understanding. We assume that the representation of
objects is part of the situation model inasmuch as it
reflects the objects of the problem situation.
 Furthermore Pennington's model accounts for
understanding of short programs but does not scale up
easily to larger programs. Two aspects are not accounted
for: the representation of delocalised plans and the
representation of text macrostructure. Pennington
assumes that the reader uses plan knowledge to construct
the situation model. A plan is a set of actions that, when
placed in a correct order, achieves some desired goal.
Programmers have knowledge about patterns of program
instructions which typically go together to accomplish
certain functions or goals (Soloway, Ehrlich and Bonar,
1982). Pennington assumes that plan representations of a
program are primarily based on data flow relations. In
long programs, particularly in OO programs, it happens
that many plans are delocalised. According to Rist
(1996), plans and objects are orthogonal in OO systems.
A plan can use many objects and an object can be used in
many plans. In an OO system, the actions in a plan are
encapsulated in a set of routines, and the routines are
divided among a set of classes and connected by control
flow. In our model we take the view that the
construction of these complex delocalised plan
representations is primarily based on client-server
relationships, in which one object processes and supplies
data needed by another object.
 The macrostructure of long programs is not accounted
for at all in Pennington's model, at the level of the

program model. She accounts for the representation of
elementary units, such as elementary operations and
control flow between these operations, but she does not
account for the representation of larger text units such as
routines. Our model considers these text units as reflected
by the macrostructure of the program model.

2.4. Proposed model of comprehension of
object-oriented programs
 As in Pennington's model, our situation model
contains information about goals and data flow. In order
to take into account the OO nature of programs and the
size of programs, we have added information about
objects as well as client-server relationship between
objects. Information about objects and goals represents
the static aspects of the problem solution, whereas
information about data-flow and client-server
relationships represents more dynamic aspects of the
solution to the problem.
 To summarize, the static aspects of the situation
model refer to:
(1) the problem objects which directly model objects of
the problem domain;
(2) the relationship between those objects, i.e., the
inheritance/composition relationships between objects;
(3) the computing or reifed objects (e.g., a string class
which is not a problem domain object). They are also
represented at this level inasmuch as they are necessary
to complete the representation of the relationships
between problem objects, i.e., they bundles together
program-level elements needed by the domain objects;
(4) the main goals of the problem. They correspond to
functions of the program viewed at a high level of
granularity. They do not correspond to single program
units. The complex plan which realizes one goal is
usually a delocalized plan in an OO programs.
 The dynamic aspects of the situation model represent
the communication between objects at a high level of
granularity and the communication between variables at a
fine level of granularity. These relationships trace the
delocalized plans and the local plans involved in the
problem solution. They are:
(1) Communications between objects correspond to
client-server relationships in which one object processes
and supplies data needed by another object. These
connections between objects are the links connecting
units of complex delocalized plans. In an OO system, the
actions in a complex plan which performs a main goal
are encapsulated in a set of routines, and the routines are
divided among a set of classes and connected by control
flow. Client-server relationships represent those
connections.

(2) Communications between variables correspond to
data flow relationships connecting units of local plans in
a routine.
 The program model contains two levels:
(1) at a microlevel, elementary operations constitute
basic text units and control flow information constitutes
the links between text units. Control flow, at this fine
level of granularity, represents the control structure
(either sequence, loop or test) linking individual
operations;
(2) at a macrolevel, larger text units are represented.
These are functions corresponding to units in the
program structure, i.e., routines attached to objects.
 As in text understanding theory, we assume that the
construction of the situation model makes extensive use
of the subject's existing domain knowledge. This
representation is produced by inferences and is also a
source of new inferences. Two kinds of knowledge,
generic and episodic, and two knowledge domains, the
problem domain and the programming domain, may be
involved in this construction. Inferences may be drawn
on the basis of schematic knowledge from the
programming domain, such as plan knowledge.
Knowledge about the problem situation, either generic
knowledge or episodic knowledge, may also be activated
and used as a source for inferences. On the contrary, the
construction of the program model is based mostly on
text structure knowledge and on local inferences for
connecting propositions.
 An important idea is that, whereas the construction of
the textbase is systematic/automatic, the construction of
the situation model is optional. Also, the building of the
situation model requires time. It depends on the subject's
knowledge and also on the task.

2.5. Research questions
 We wish to evaluate the cognitive validity of the
distinction between the program model and the situation
model in OO program understanding. In particular, we
wish to examine how the construction of these two kinds
of representation is differentially affected by the
programmer's expertise and how they evolve
differentially over time.
 Our first question is how expertise in programming
affects the construction of the two representations. Here
we must make clear that we do not manipulate expertise
in the problem domain (all subjects have knowledge in
this domain), but rather we manipulate the expertise in
the programming domain. We compare expert
programmers in OO programming with advance
computer science students learning OO programming.
According to our model, the expertise of subjects should

affect the construction of the situation model but not the
construction of the program model, provided that our
novices are advanced students.
 However, it is worth noting that a different hypothesis
would be made by advocates of OOP. They have made
strong claims about the naturalness, ease of use, and
power of this design approach (Rosson and Alpert,
1990). It has been argued that there is a direct
correspondence between the OO paradigm and the way
people naturally think about problems (Borgida,
Greenspan and Mylopoulos, 1986). If this is true,
decomposition of a problem into objects may be easier
in the OO paradigm because it is driven more by
knowledge about world structure and less by knowledge
about design schemas (or programming plans)
representing classes of solutions in the programming
domain. On this basis it could be argued that
constructing the situation model, in particular the static
part of it, would be easy in OO program comprehension,
whatever the programmer's level of expertise. Thus, it
would be expected that expertise in programming would
not affect the construction of the situation model.
 Our second research question concerns how the
program model and situation model evolve over time.
We examine the representations constructed after a first
phase of comprehension then after a second phase of
comprehension. The question is whether there is an order
of construction of representations in OO program
comprehension.
 Another research question is to examine the effect of
the task (or purpose for reading) on the construction of
the representations in OO program comprehension. We
chose two tasks, the reuse task and the documentation
task, because there are two realistics purpose for reading
in program comprehension and because the involved
problem solving component is more important in the
former than in the latter of these tasks. This question
will not be addressed directly in this paper as the data are

still under process.
 In order to analyze these research questions we
conducted an experiment on OO program understanding
by experts and novices. Our experimental paradigm is
similar to the one used by Pennington. Subjects
answered questions after having studied a program for a
certain period of time. The question categories were
revised in accordance with our model.

3. DESIGN AND METHODOLOGY

3.1. Experimental design
 A three-factor mixed design was used, as shown in
Figure 1. The between subjects factors were expertise
(OO expert vs. OO novice) and task orientation
(documentation vs. reuse). The within subjects factor
was phase (preliminary comprehension phase vs. task
performance phase) and information category. Half the
subjects were given a documentation task and half a reuse
task.
 The comparison between question set 1 after the
preliminary comprehension phase and question set 2 after
the task performance phase addressed the research
question about the order of acquisition of knowledge in
comprehension. Data came from both correctness of
responses to questions and reaction times. The
comparison between experts and novices provided data
relevant to the research question about comprehension
differences between expert and novice OO programmers.

3.2 Subjects
 The subjects were 30 object-oriented experts and 21
object-oriented novices. The experts were professional
programmers with experience in object-oriented design
with C++. The novices were advance computer science
students who were experienced in C but had only a basic
knowledge of object-oriented programming and C++.

OO experts OO novices

Documentation
task

Reuse
task

Documentation
task

Reuse
task

Preliminary
comprehension

phase

Study pgm with
documentation

orientation, then
question set 1

Study pgm with
reuse orientation,

then question set 1

Study pgm with
documentation

orientation, then
question set 1

Study pgm with
reuse orientation,

then question set 1

Task performance
phase

Documentation of
pgm, then question

set 2

Reuse to solve
target problem,

then question set 2

Documentation of
pgm, then question

set 2

Reuse to solve
target problem,

then question set 2

Figure 1 Experimental design

Thirty of the subjects were speakers of English and 21
were speakers of French.

3.3 Materials
 The materials consisted of a database program of
approximately 550 lines which managed personnel,
student, and course information for a small university.
The program was composed of 10 classes. It was written
in object-oriented C++ and presented in 23 files. The
domain of the problem allowed us to write a program
which took good advantage of the OO paradigm,
including ease of conceptualization in terms of objects,
classes, and inheritance. As in Pennington's study
(1987a), little documentation was included in the text of
the program. During the task performance phase, reuse
oriented subjects were given a variation of the library
problem (Wing, 1988) to design and implement. This
problem was partially isomorphic to the database
program and allowed for reuse by template copying and

modification or by inheritance. Documentation oriented
subjects were asked to comment the code for the use of
another programmer who would later maintain it.
 Two matched sets of yes/no questions were developed,
one to be used at the end of each phase. The questions fit
conceptually into two classes targeting knowledge
making up the program model and the situation model.
Three information categories reflected information
composing the program model (see Table 1).

 Six information categories reflected information
composing the situation model (see Table 2). The first
four represent the static part of the situation model and
the last two represent the dynamic part.

 Two matched questionnaires were used. Each
questionnaire contained 54 questions (3 yes questions * 3
no questions * 9 question categories). Two versions, a
French and an English version, of each questionnaire
were created. The order of presentation of the
questionnaires was counterbalanced. The questions were
randomized for presentation to subjects.

3.4 Procedure
 Experts and novices were assigned randomly to the
documentation or reuse groups. They were given an
orientation to study the program for later reuse or
documentation, as appropriate. Subjects were then given
the database program and asked to study it for 35
minutes. Verbal protocols were collected. After this
preliminary comprehension phase oriented by
documentation or reuse goals, subjects answered the first
question set on-line. Correctness and reaction times to
the questions were recorded. In the performance phase,
subjects were asked to carry out the documentation or
reuse task for 90 minutes. Again verbal protocols were
collected. Finally, subjects answered the second set of
comprehension questions.
 Subjects were provided with a paper version as well as
an electronical version of the program files. They were
allowed to run the program but could modify it only in
the second phase of the experiment.

4. RESULTS
 In this section we first present the global results with
respect to the factors under study: expertise, phase, and
information category. Then we present more detailed
results concerning the model of comprehension of OO
programs presented earlier. Most of the analyses involve
the correctness of responses to the questions, but
reference is made to reaction times when appropriate.
Whatever the comparison we made, we calculated the

Elementary operations
 Does the program contain the code fragment: if
((number == search) || (name == search)) return TRUE;
else return FALSE;?

Control flow
 In "initialize" are the professors initialized before the
courses ?

Elementary functions
Does "Collection::maintain" print out a list and ask the
user to input a selection.?

Table 1 Example of questions from categories
composing the program model

Problem objects
Does the program define a “Schedule” class?

Computing objects
Does the program define a “Collection” class?

Object relationships
Does the “Researcher” class inherit from the
“Employee” class?

Goals
Does the program allow you to create a new schedule
for an upcoming semester?

Client-server
Does the "Schedule" class call a member function of
the "Course" class?

Data flow
In "Schedule::maintain" does the value of "selection"
affect the value of "offerings"?

Table 2 Example of questions from categories
composing the situation model

scores considering 6 as the maximum correctness value.
We do not report results from the protocol analysis.
 As indicated in the methodology section, each subject
was assigned to the French or English form of the
questionnaires, as appropriate. A preliminary analysis
showed few effects of language and those restricted
largely to the reaction time data, so language is not
treated further here. Subjects were randomly assigned to
a reuse or a documentation task. Task is not analyzed
here; for the current purposes the important point is that
both tasks were strongly comprehension-dependent.
 Assignment of subjects to novice or expert levels was
initially done on the basis of a self-report questionnaire.
To verify the group assignments a posteriori, we carried
out a preliminary analysis. A qualitative data analysis
was made on subjects responses patterns by using a
dynamic cluster method. The results strongly supported
our original grouping.
 Initially a three-way mixed model Analysis of
Variance was performed on the number of correct
responses to questions. The between subjects factor was
expertise (novice or expert). The within subjects factors
were phase (1=preliminary or 2=task performance) and
question category (nine categories as described in section
3.3). The results showed that there was a significant
overall effect of expertise (mexpert = 4.23, sd = 1.32;
mnovice =3.89, sd = 1.29; F(1, 44) = 11.08, p <
.0018). There was a significant effect of phase (mphase1

= 3.93, sd = 1.34; mphase2 = 4.25, sd = 1.28; F(1, 44)
= 23.87, p < .0001). Category was significant, as well
(F (8, 352) = 36.68, p < .0001). The two-way
interaction of expertise and category was significant (F
(8, 352) = 3.16, p < .0018). The two-way interaction of
expertise and phase was not significant, nor was the
two-way interaction of phase and category, nor the three-
way interaction. See Figure 2 for the means of the
interactions.
 Our model of OO program comprehension contrasts
the situation model with the program model. We carried
out further analyses to test this model. The model-based
analysis compared the six information categories making
up the situation model (problem objects, computing
objects, object relationships, goals, client-server
relationships, and data flow) with the three information
categories making up the progam model (elementary
operations, control flow, and elementary functions). We
found an overall difference between the situation and
progam models (msituation = 4.36, sd = .61; mprogram
= 3.55, sd = .65; F(1, 43) = 110.94, p < .0001). Scores
for the situation model improved significantly between
phase 1 and phase 2 (msituation-p1 = 4.17, sd = .65;
msituation-p2 = 4.55, sd = .51; F = 10.83, p < .002),
while scores for the program model did not. Experts had
significantly higher scores on the situation model than
did novices (msituation-expert = 4.56, sd = .54;

0

1

2

3

4

5

6

el
em

en
ta

ry
op

er
at

io
ns

co
nt

ro
l

flo
w

el
em

en
ta

ry
fu

nc
tio

ns

pr
ob

le
m

ob
je

ct
s

ob
je

ct
re

la
ti

on
sh

ip
s

co
m

pu
tin

g
ob

je
ct

s

go
al

s

cl
ie

nt
-

se
rv

er

da
ta

 f
lo

w

Experts (1)
Experts (2)
Novices (1)
Novices (2)

Figure 2 Mean correctness score by question category for novices and experts in phase 1 and in phase 2 (max. = 6)

msituation-novice = 4.10, sd = .61; F(1, 44) = 19.17, p
< .0001). However, there was no expert/novice
difference on the program model.
 As described above, the situation model may be
considered to have two aspects: static information vs.
dynamic information. To investigate the representation
further we compared these two with each other and with
the program model. The static situation knowledge
contained problem objects, computing objects, object
relationships, and goals. The dynamic situation
knowledge contained client-server relationships and data
flow. There was a significant overall difference between
the static and dynamic information (mstatic = 4.74, sd =
.68; mdynamic = 3.62, sd = .96; F(1, 45) = 106.20, p <
.0001). Also, the reaction times (corrected for question
length) for the program objects and goals categories of
the static part were faster than any other categories.
There was a significant difference between phase 1 and
phase 2 for static information (mstatic-p1 = 4.57, sd =
.71; mstatic-p2 = 4.90, sd = .59; F(1, 45) = 7.15, p <
.0104) and also for dynamic information (mdynamic-p1
= 3.38, sd = 1.09; mdynamic-p2 = 3.85, sd = .75; F(1,
45) = 9.36, p < .0037). For the static information
experts scored significantly higher than novices (mstatic-
expert = 5.00, sd = .49; mstatic-novice = 4.36, sd = .73;
F(1, 46) = 34.23, p < .0001). However, for the dynamic
information there was no difference between experts and
novices. There was a significant overall difference
between the static part of the situation model and the
program model (means given previously; F(1,45) =
237.92, p < .0001). Finally, for the comparison of the
dynamic part of the situation model and the program
model, there was no significant difference.

5. DISCUSSION
 Our results tend to show that the distinction between
the situation model and the program model has cognitive
validity for OO programmers. First, our findings show
that there is an overall difference between these two
representations. The situation model appears to be
stronger (based on the correctness of responses) than the
program model. Second, our findings show that these
two representations are affected differentially by the
expertise and phase factors. Expertise has an effect on the
construction of the situation model, whereas it has no
effect on the construction of the program model.
Furthermore, phase affects the construction of the
situation model but not the program model, i.e., there is
an enrichment of the situation model over time whereas
the program model remains "stationary".

 Our results also indicate an overall difference between
the static and dynamic parts of the situation model. Based
on the correctness scores, the static part of the model
appears to be better developed than the dynamic part in
the mental representation of OO programmers. The
expertise factor affects the construction of only the static
part, whereas the phase factor affects the construction of
both the static and dynamic parts. In particular, experts
develop a better static situation model than do novices.
Both static and dynamic parts improve over time.
Interestingly, the dynamic part of the situation model is
not better developed than the program model. This
implies that the marked difference between the situation
model and the program model is accounted for by the
effect of the static part.
 According to our results, the situation model is more
fully developed than the program model, even in an early
phase of comprehension. This contrasts with the results
of Pennington (1987a, 1987b) for procedural
programmers. She showed that the program model
developed more fully in the early stages of
comprehension, whereas the situation model emerged
later, after performance of a meaningful programming
task. Perhaps this difference between our results and
Pennington's can be explained by the programming
paradigm. It appears that the OO paradigm, with its
emphasis on objects and relationships of objects, may
facilitate the construction of a situation model earlier in
program comprehension. This is consistent with the
naturalness claims of advocates of the OO paradigm. On
the other hand, the situation model constructed by
experts is stronger than that constructed by novices. This
suggests that the construction of the situation model is
not based solely on problem domain knowledge but also
on knowledge acquired through experience in the
programming domain. These latter findings are
consistent with results on object-oriented design
(Détienne, to appear) which show a greater benefit of this
paradigm for expert designers than for novice designers.
 With respect to the program model, our results show
that it is not enriched over time as is the situation
model. Rather it remains essentially constant. Perhaps
this ceiling effect is related to the size of the program. In
a larger program, it may be difficult to keep in working
memory a representation of program level information.
This resource limitation hypothesis requires further
verification. Another possible explanation of lack of
growth of the program model is the comprehension
strategy of the programmer. A programmer may
concentrate on certain parts of a program at the expense
of others, as observed in the "as-needed" comprehension
strategy (Koenemann and Robertson, 1991; Littman,

Pinto, Letovsky and Soloway, 1986). The use of an as-
needed strategy appears to be task related. In further
analyses, we will use our quantitative and qualitative data
together to understand the relation between the
construction of the mental representation and
comprehension strategies.
 In our results, both the static and the dynamic parts of
the situation model evolved, becoming more elaborated
over time. However, the static part always remained
more developed than the dynamic part, even for experts.
The program objects and goals were also the more
accessible, as shown by reaction times. The dynamic part
reflects the mental representation about plans, either
local or delocalized. It appears that the OO paradigm
facilitates the construction of the situation model most
strongly in its static part. It may be hypothesized that
the dynamic part is important for linking the static
aspects of the situation model to the program model. Our
results suggest that the OO paradigm does not strongly
support this linking of the dual mental representations,
at least not early in program comprehension.

6. LIMITATIONS AND FUTURE
DIRECTIONS
 There are several limitations of this study related to the
methodology. Subjects worked with a single program
which implemented a database. To generalize the results
it is necessary to repeat the study with other programs in
other problem domains. Furthermore, while the program
was larger than often used in this kind of study, it was
still a small program by industrial standards. Thus, we
do not know whether the mental representation of a
much larger program would conform precisely to what
we found here. In our study subjects worked with the
program for approximately 2 hours, and most did not
have time to finish the reuse or documentation task they
were given. We might have observed further evolution of
the mental representation if they had worked with the
program over a longer time.
 One future direction will be to analyze the influence of
our task factor on program comprehension. As shown in
recent studies on text comprehension (Mills et al. 1995),
the purpose for reading exerts an important influence on
the construction of the mental representation. We expect
that similar effects will be found in the domain of
programming. In addition to analyzing the effects of a
reuse or documentation task, we are interested in
extending this study to other comprehension-related
tasks, such as program modification.
 Another direction of this research will be to analyze
the comprehension strategies used by subjects
performing different tasks and subjects at different levels

of expertise. We plan to use qualitative data from our
think-aloud protocols to link specific comprehension
strategies to outcomes in the development of the mental
representation.

REFERENCES
 Borgida, A., Greenspan, S., and Mylopoulos, J.
(1986). Knowledge representation as the basis for
requirements specifications. In C. Rich and C. R. Waters
(Eds): Readings in Artificial Intelligence and Software
Engineering. Los Altos, CA: Kaufmann. 561-570.
 Détienne, F. (1995) Design strategies and knowledge
in object-oriented programming: effects of experience.
Human-Computer Interaction, 10 (2 & 3), 129-170.
 Détienne, F. (to appear) Assessing the cognitive
consequences of the object-oriented approach: a survey of
empirical research on object-oriented design by
individuals and teams. Interacting with Computers.
 Johnson-Laird, P. N. (1983). Mental models: Towards
Cognitive Science of Language, Inference, and
Consciousness. Cambridge: Cambridge University
Press.
 Koenemann, J. and Robertson, S.P. (1991). Expert
problem solving strategies for program comprehension.
In S. P. Robertson, G. M. Olson, and J. S. Olson (Eds):
CHI'91 Conference Proceedings, NY: ACM. 125-130.
 Littman, D. C., Pinto, J., Letovsky, S., and
Soloway, E. (1986). Mental Models and Software
Maintenance. In E. Soloway and S. Iyengar (Eds):
Empirical Studies of Programmers, Norwood, NJ:
Ablex. 80-98.
 Mills, B. C., Diehl, V. A., Birkmire, D. P. & Mou,
L-C. (1995) Reading procedural texts: effects of purpose
for reading and predictions of reading comprehension
models. Discourse Processes, 20, 79-107.
 Pennington, N. (1987a). Comprehension strategies in
programming. In G.M. Olson, S. Sheppard, and E.
Soloway (Eds): Empirical Studies of Programmers:
Second Workshop. Norwood, NJ: Ablex. 100-113.
 Pennington, N. (1987b). Stimulus Structures and
Mental Representations in Expert Comprehension of
Computer Programs. Cognitive Psychology, 19, 295-
341.
 Pennington, N., Lee, A. Y., & Rehder, B. (1995).
Cognitive activities and levels of abstraction in
procedural and object-oriented design. Human-Computer
Interaction, 10 (2 & 3), 171-226.
 Rist, R. (1996) System structure and design. In W. D.
Gray, & D. A. Boehm-Davis (Eds): Empirical Studies of
Programmers, Sixth. Norwood, NJ: Ablex. 163-194.

 Rosson, M. B., and Alpert, S. R. (1990). The
cognitive consequences of object-oriented design.
Human-Computer Interaction, 5(4), 345-379.
 Schmalhofer, F., and Glavanov, D. (1986). Three
Components of Understanding a Programmer's Manual :
Verbat im, Proposi t ional , and Si tuat ional
Representations. Journal of Memory and Language, 25,
295-313.
 Soloway, E., Ehrlich, K., & Bonar, J. (1982) Tapping
into tacit programming knowledge. IEEE Transactions
on Software Engineering, SE-10, 595-609.
 van Dijk, T.A. and Kintsch, W. (1983) Strategies of
Discourse Comprehension. New York: Academic.
 Wing, J.M. (1988) A study of 12 specifications of the
library problem. IEEE Software, 5, 66-72.

