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MULTIPOINT PADÉ APPROXIMANTS TO COMPLEX CAUCHY TRANSFORMS

WITH POLAR SINGULARITIES

L. BARATCHART AND M. YATTSELEV

Abstract. We study diagonal multipoint Padé approximants to functions of the form

F (z) =

Z
dλ(t)

z − t
+ R(z),

where R is a rational function and λ is a complex measure with compact regular support

included in R, whose argument has bounded variation on the support. Assuming that

interpolation sets are such that their normalized counting measures converge sufficiently

fast in the weak-star sense to some conjugate-symmetric distribution σ, we show that the

counting measures of poles of the approximants converge to bσ, the balayage of σ onto the

support of λ, in the weak∗ sense, that the approximants themselves converge in capacity to

F outside the support of λ, and that the poles of R attract at least as many poles of the

approximants as their multiplicity and not much more.

1. Introduction

This paper is concerned with the asymptotic behavior of diagonal multipoint Padé approxi-

mants to functions of the form

(1) F (z) =

∫
dλ(t)

z − t + R(z),

where R is a rational function holomorphic at infinity and λ is a complex measure compactly

and regularly supported on the real line.

Diagonal multipoint Padé approximants are rational interpolants of type (n, n) where, for

each n, a set of 2n + 1 interpolation points has been prescribed, one of which is infinity.

Moreover, we assume that the interpolation points converge sufficiently fast to a conjugate-

symmetric limit distribution whose support is disjoint from both the poles of R and the convex

hull of supp(λ), the support of λ (see (8)).

To put our results into perspective, let us begin with an account of the existing literature.

When λ is a positive measure and R ≡ 0 (in this case F is referred to as a Markov function),

the study of diagonal Padé approximants to F at infinity goes back to A. A. Markov who

showed (see [23]) that they converge uniformly to F on compact subsets of C \ I, where I is

the convex hull of supp(λ). Later this work was extended to multipoint Padé approximants with

conjugate-symmetric interpolation schemes by A. A. Gonchar and G. López Lagomasino in [16].

A cornerstone of the theory is the close relationship between Padé approximants to Markov

functions and orthogonal polynomials, since the denominator of the n-th diagonal approximant

is the n-th orthogonal polynomial in L2(dλ) (resp. L2(dλ/p), where p is a polynomial vanishing
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2 L. BARATCHART AND M. YATTSELEV

at finite interpolation points). For further references and sharp error rates, we refer the reader

to the monographs [33, 36].

Another generalization of Markov’s result was obtained by A. A. Gonchar on adding polar

singularities, i.e. on making R 6≡ 0. He proved in [15] that Padé approximants still converge to

F locally uniformly in C\(S′∪ I), where S′ is the set of poles of R, provided that λ is a positive

measure with singular part supported on a set of logarithmic capacity zero. Subsequently, it was

shown by E. A. Rakhmanov in [27] that weaker assumptions on λ can spoil the convergence,

but at the same time that if the coefficients of R are real, then the locally uniform convergence

holds for any positive λ. Although it is not a concern to us here, let us mention that one may

also relax the assumption that supp(λ) is compact. In particular, Padé and multipoint Padé

approximants to Cauchy transforms of positive measures supported in [0,∞] (such functions

are said to be of Stieltjes type) were investigated by G. López Lagomasino in [19, 20]. Let us

also stress that polynomials satisfying certain Sobolev-type orthogonality exhibit an asymptotic

behavior quite similar to that of the denominators of diagonal Padé approximants to functions

of the form (1) with non-trivial R [21].

The case of a complex measure was taken up by G. Baxter in [11] and by J. Nuttall and S.

R. Singh in [25], who established strong asymptotics of non-Hermitian orthogonal polynomials

on a segment for measures that are absolutely continuous with respect to the (logarithmic)

equilibrium distribution of that segment, and whose density satisfy appropriate conditions ex-

pressing, in one way or another, that it is smoothly invertible. These results entail that the

Padé approximants to F converge uniformly to the latter on compact subsets of C \ I when

R ≡ 0 and dλ/dµI meets these conditions (here µI indicates the equilibrium distribution on

I). For instance Baxter’s condition is that log dλ/dµI , when extended periodically, has an

absolutely summable Fourier series. When dλ(t)/dt is holomorphic and non-vanishing on a

neighborhood of I, still stronger asymptotics, which apply to multipoint Padé approximants as

well, were recently obtained by A. I. Aptekarev in [4] (see also [5]), using the matrix Riemann-

Hilbert approach pioneered by P. Deift and X. Zhou (see e.g. [12]). Even though it is not

directly related to the present work we mention for completeness another approach to analyzing

the asymptotics of Padé approximants based on three term recurrence relations [10].

Meanwhile H. Stahl opened up new perspectives in his pathbreaking papers [31, 32], where

he studied diagonal Padé approximants to (branches of) multiple-valued functions that can be

continued analytically without restriction except over a set of capacity zero (typical examples

are functions with poles and branchpoints). By essentially representing the “main” singular

part of the function as a Cauchy integral over a system of cuts of minimal capacity, and

through a deep analysis of zeros of non-Hermitian orthogonal polynomials on such systems of

cuts, he established the asymptotic distribution of poles and subsequently the convergence in

capacity of the Padé approximants on the complement of the cuts. In [17] this construction

was generalized to certain carefully chosen multipoint Padé approximants by A. A. Gonchar

and E. A. Rakhmanov, who, in particular, used it to illustrate the sharpness of O. G. Parfenov’s

theorem (formerly Gonchar’s conjecture) on the rate of approximation by rational functions

over compact subsets of the domain of holomorphy, see [26]. Of course the true power of this

method lies with the fact that it allows one to deal with measures supported on more general

systems of arcs than a segment, which is beyond the scope of the present paper. However, since

a segment is the simplest example of an arc of minimal logarithmic capacity connecting two

points, the results we just mentioned apply in particular to functions of the form (1), where λ is a

complex measure supported on a segment which is absolutely continuous there with continuous
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density that does not vanish outside a set of capacity zero. By different, operator-theoretic

methods, combined with a well-known theorem of E. A. Rakhmanov on ratio asymptotics (see

[28]), A. Magnus further showed that the diagonal Padé approximants to F converge uniformly

on compact subsets of C \ I when R ≡ 0 and dλ/dt is non-zero almost everywhere with

continuous argument [22]. The existence of a uniformly convergent subsequence of diagonal

Padé approximants to (1) with non-trivial R was shown in [34] whenever supp(λ) is a disjoint

union of analytic arcs in “general position” of minimal capacity and dλ/dt is sufficiently smooth

and non-vanishing. Moreover, when supp(λ) is a union of several intervals and the density of

the measure is real analytic, the behavior of the zeros that do not approach supp(λ) nor

the poles of R can be described by the generalized Dubrovin system of non-linear differential

equations [35].

In contrast with previous work, the present approach allows the complex measure λ to vanish

on a large subset of I. Specifically, we require that the total variation measure |λ| has compact

regular support and that it is not too thin, say, larger than a power of the radius on relative balls

of the support (see the definition of the class BVT in Section 2). In particular, this entails that

supp(λ) could be a thick Cantor set, or else the closure of a union of infinitely many intervals;

such cases could not be handled by previously known methods. Although fairly general, these

conditions could be further weakened, for instance down to the Λ-criterion introduced by H.

Stahl and V. Totik in [33]1. However, our most stringent assumption bears on the argument

of λ, as we require the Radon-Nikodym derivative dλ/d |λ| to be of bounded variation on

supp(λ). This assumption, introduced in [18, 6], unlocks many difficulties and will lead us to

the weak convergence of the poles and to the convergence in capacity on C\ (S′∪ supp(λ)) of

multipoint Padé approximants to functions of the form (1). Moreover we shall prove that each

pole of R attracts at least as many poles of the approximants as its multiplicity, and not much

more. In fact, our hypotheses give rise to an explicit upper bound on the number of poles of

the approximants that may lie outside a given neighborhood of the singular set of F . Hence,

on each compact subset K of C \ (S′ ∪ supp(λ)), every sequence of approximants contains a

subsequence that converges uniformly to F locally uniformly on K \ E, where E consists of

boundedly many (unknown) points. When supp(λ) is a finite union of intervals, results of this

type were obtained under stronger assumptions in [24] for classical Padé approximants.

Finally, we would like to mention that the presented approach can also be carried out

for AAK-type meromorphic approximants. Although their definition is rather simple, deriving

functional decomposition for them is not trivial (cf. [1] and [8]) and the latter gives rise to

more complicated orthogonality relations than those satisfied by the denominators of Padé

approximants. Thus, we consider meromorphic approximants separately in [9].

2. Padé Approximation

We start by describing the class of measures that we allow in (1) and placing restrictions

on the points with respect to which we shall define Padé approximants.

Let λ be a complex Borel measure whose support S := supp(λ) ⊂ R is compact and consists

of infinitely many points. Denote by |λ| the total variation measure. Clearly λ is absolutely

continuous with respect to |λ|, and we shall assume that its Radon-Nikodym derivative (which

is of unit modulus |λ|-a.e.) is of bounded variation. In other words, λ is of the form

(2) dλ(t) = e iϕ(t)d |λ|(t),

1This depends on the corresponding generalization of the results in [6] to be found in [18], as yet unpublished.
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for some real-valued argument function ϕ such that2

(3) V (ϕ,S) := sup


N∑
j=1

|ϕ(xj)− ϕ(xj−1)|

 <∞,

where the supremum is taken over all finite sequences x0 < x1 < . . . < xN in S as N ranges

over N.

For convenience, we extend the definition of ϕ to the whole of R as follows. Let I := [a, b]

be the convex hull of S. It is easy to see that if we interpolate ϕ linearly in each component

of I \ S and if we set ϕ(x) := limt→a, t∈S ϕ(t) for x < a and ϕ(x) := limt→b, t∈S ϕ(t) for

x > b (the limits exist by (3)), the variation of ϕ will remain the same. In other words, we

may arrange things so that the extension of ϕ, still denoted by ϕ, satisfies

V (ϕ,S) = V (ϕ,R) =: V (ϕ).

Among all complex Borel measures of type (2)-(3), we shall consider only a subclass BVT

defined as follows. We say that a complex measure λ, compactly supported on R, belongs to

the class BVT if it has an argument of bounded variation and if moreover

(1) supp(λ) is a regular set;

(2) there exist positive constants c and L such that, for any x ∈ supp(λ) and δ ∈ (0, 1),

the total variation of λ satisfies |λ|([x − δ, x + δ]) ≥ cδL.

In what follows we consider only functions of the form

(4) F (z) :=

∫
dλ(ξ)

z − ξ + Rs(z),

with λ ∈ BVT and Rs a rational function of type (s − 1, s) assumed to be in irreducible form.

Hereafter we shall denote by

(5) Qs(z) =
∏
η∈S′

(z − η)m(η)

the denominator of Rs , where S′ is the set of poles of Rs and m(η) stands for the multiplicity

of η ∈ S′. Thus, F is a meromorphic function in C \ S with poles at each point of S′ and

therefore it is holomorphic in C \ S̃, where

S̃ := S ∪ S′.
Note that F does not reduce to a rational function since S consists of infinitely many points

(cf. [7, Sec. 5.1] for a detailed argument).

Diagonal multipoint Padé approximants to F are rational functions of type (n, n) that in-

terpolate F at a prescribed system of points. More precisely, pick n ∈ N and let An =

{ζ1,n, . . . , ζ2n,n} be a set of 2n interpolation points, where the ζj,n ∈ C \ S̃ need not be distinct

nor finite. With such an An we form the monic polynomial

(6) v2n(z) =
∏

ζj,n∈An∩C
(z − ζj,n)

(note that v2n retains only the interpolation points at finite distance thus it needs not have

exact degree 2n).

2Note that e iϕ has bounded variation if and only if ϕ can be chosen of bounded variation.
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Given F of type (4) and An as above, the diagonal multipoint Padé approximant to F as-

sociated with An is the unique rational function Πn = pn/qn where the polynomials pn and qn
satisfy:

(i) deg pn ≤ n, deg qn ≤ n, and qn 6≡ 0;

(ii) (qn(z)F (z)− pn(z)) /v2n(z) is analytic in C \ S̃;

(iii) (qn(z)F (z)− pn(z)) /v2n(z) = O
(

1/zn+1
)

as z →∞.

A multipoint Padé approximant always exists since the conditions for pn and qn amount to

solving a system of 2n+ 1 homogeneous linear equations with 2n+ 2 unknown coefficients, no

solution of which can be such that qn ≡ 0 (we may thus assume that qn is monic); note that

(iii) entails at least one interpolation condition at infinity and therefore Πn is, in fact, of type

(n − 1, n).

If we let now A := {An}n∈N be an interpolation scheme, i.e. a sequence indexed by n ∈ N
of sets An as above, we get a corresponding sequence {Πn}n∈N of diagonal Padé approximants

whose asymptotic behavior can be studied when n gets large. Namely, we shall be interested

in three types of questions:

(a) What is the asymptotic distribution of the poles of Padé approximants to F?

(b) Do some of these poles converge to the polar singularities of F?

(c) What can be said about the convergence of such approximants to F?

To be able to provide answers to these questions, we need to place some constraints on

interpolation schemes. An interpolation scheme A is said to be admissible if

(1) K(A), the set of the limit points of A, is disjoint from S′ ∪ I;
(2) the counting measures of the points in Ak converge in the weak∗ topology to some

Borel measure, say σ, having finite logarithmic energy;

(3) the argument functions of polynomials v2n, associated to A via (6), have uniformly

bounded derivatives on I.

In other words, we call an interpolation scheme admissible if the interpolation points stay

away from the poles of Rs and the convex hull of the support of λ, if there exists a Borel

measure σ = σ(A) supported on K(A) such that

σn :=
1

n

2n∑
j=1

δζj,n
∗→ σ,

and if the norms ‖(v2n/|v2n|)′‖I are uniformly bounded with n, where ‖ · ‖K stands for the

supremum norm on a set K. We call σ the asymptotic distribution of A. Note that K(A) is

not necessarily compact. If it is not compact, the finiteness of the logarithmic energy of σ is

understood as follows. Since K(A) is closed and does not intersect S̃, there exists z0 ∈ C\∪kAk
such that z0 /∈ K(A). Pick such a z0 and set Mz0 (z) := 1/(z − z0). Then, all Mz0 (Ak) are

contained in some compact set and their counting measures converge weak∗ to σ] such that

σ](B) := σ(M−1
z0

(B)) for any Borel set B ⊂ C. We say that A is admissible if σ] has finite

logarithmic energy. Obviously, this definition does not depend on a particular choice of z0.

Further, as a consequence of (3), there exists a finite constant VA satisfying

(7) V (arg(v2n), I) ≤ VA for any n ∈ N.
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Notice that (3) is satisfied if, for example, all An in A are conjugate-symmetric. More generally,

it can be readily verified that (3) amounts to

(8) Im

(∫
dσn(t)

z − t

)
= O

(
1

n

)
uniformly on I, which is exactly what we meant in the introduction when saying that the

counting measures of interpolation points should converge sufficiently fast.

The four theorems stated below constitute the main results of the paper. For the notions

of potential that we use (logarithmic and Green potentials, balayage, equilibrium distributions,

capacity and convergence in capacity) the reader may want to consult the appendix.

Theorem 2.1. Let F be given by (4)-(5) with λ ∈ BVT and let {Πn}n∈N be a sequence of

diagonal multipoint Padé approximants to F that corresponds to an admissible interpolation

scheme A with asymptotic distribution σ. Then the counting measures of the poles of Πn
converge in the weak∗ sense to σ̂, the balayage of σ onto S.

We note that the limit distribution of poles of Πn can also be interpreted as the weighted

equilibrium distribution on S in the presence of the external field −Uσ (cf. [30, Ch. I]).

Recall (cf. [30, pg. 118]) that δ̂∞ is simply µS, the logarithmic equilibrium distribution on S.

Therefore for classical Padé approximants (when each v2n ≡ 1, i.e. when all the interpolation

points are at infinity), the above theorem reduces to the following result.

Corollary 2.2. Let F be given by (4)-(5) with λ ∈ BVT and let {Πn}n∈N be the sequence of

Padé approximants to F at infinity. Then the counting measures of the poles of Πn converge

to µS in the weak∗ sense.

The previous theorem gave one answer to question (a). Our next result addresses question

(c) by stating that the approximants behave rather nicely toward the approximated function,

namely they converge in capacity to F on C \ S.

Theorem 2.3. Let F , A, and {Πn}n∈N be as in Theorem 2.1. Then

(9) |(F − Πn)(z)|1/2n cap→ exp
{
−UσC\S(z)

}
on compact subsets of C \ S, where UσC\S is the Green potential of σ relative to C \ S and

cap→
denotes convergence in capacity.

Finally, we approach question (b). In order to provide an answer to this question, we need

some notation. For any point z ∈ C define the lower and upper characteristic m(z), m(z) ∈ Z+

as

m(z) := inf
U
m(z, U), m(z, U) := lim

N→∞
max
n≥N

#{Sn ∩ U},

and

m(z) := inf
U
m(z, U), m(z, U) := lim

N→∞
min
n≥N

#{Sn ∩ U},

respectively, where the infimum is taken over all open sets containing z and Sn is the set

of poles of Πn, counting multiplicities. Clearly, m(z) ≤ m(z), m(z) = +∞ if z ∈ S by

Theorem 2.1, and m(z) = 0 if and only if z is not a limit point of poles of Πn. Further, let

Im := {[aj , bj ]}mj=1 be any finite system of intervals covering S. Also, let Arg(ξ) ∈ (−π, π] be
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the principal branch of the argument, where we set Arg(0) = π. With this definition, Arg(·)
becomes a left continuous function on R. Now, for any interval [aj , bj ] in Im we define the

angle in which this interval is seen at ξ ∈ C by

Angle(ξ, [aj , bj ]) := |Arg(aj − ξ)− Arg(bj − ξ)|.

Finally, we define additively this angle for the whole system, i.e. the angle in which Im is seen

at ξ is defined by3

(10) θ(ξ) :=

m∑
j=1

Angle(ξ, [aj , bj ]).

Note that 0 ≤ θ(ξ) ≤ π and θ(ξ) = π if and only if ξ ∈ Im.

The forthcoming theorem implies that each pole of F attracts at least as many poles of

Padé approximants as its multiplicity and not much more.

Theorem 2.4. Let F , A, and {Πn}n∈N be as in Theorem 2.1 and θ(·) be the angle function

for a system of m intervals covering S. Then

(11) m(η) ≥ m(η), η ∈ S′,

and

(12)
∑
η∈S′\S

(m(η)−m(η))(π − θ(η)) ≤ V,

with

(13) V := V (ϕ) + VA + (m + 2s ′ − 1)π + 2
∑
η∈S′\S

m(η)θ(η),

where VA was defined in (7) and s ′ is the number of poles of R on S counting multiplicities.

The basis of our approach lies in analyzing the asymptotic zero distribution of certain non-

Hermitian orthogonal polynomials. It is easy to understand why. Indeed, let Γ be any closed

Jordan curve that separates S̃ and K(A) and contains S̃ in the bounded component of its

complement, say D. Since

(qnF − pn)(z)/v2n(z) = O(1/zn+1) as z →∞

and the left-hand side is analytic in C \ S̃, the Cauchy formula yields∫
Γ

z jqn(z)F (z)
dz

v2n(z)
= 0, j = 0, . . . , n − 1, z ∈ D.

Clearly, by writing Rs as

Rs(z) =
∑
η∈S′

m(η)−1∑
k=0

rη,k
(z − η)k+1

,

we see that the last equations are equivalent to

(14)

∫
Pn−1(t)qn(t)

dλ(t)

v2n(t)
+
∑
η∈S′

m(η)−1∑
k=0

rη,k
k!

(
Pn−1(t)qn(t)

v2n(t)

)(k)
∣∣∣∣∣
t=η

= 0

3The notation does not reflect the dependency on the system of intervals, but the latter will always be made

clear.
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for all Pn−1 ∈ Pn−1 by the definition of F , the Fubini-Tonelli’s theorem, and the residue formula.

So, upon taking Pn−1 to be a multiple of Qs , these relations yield for n > s

(15)

∫
tkQs(t)qn(t)

dλ(t)

v2n(t)
= 0, k = 0, . . . , n − s − 1.

Hence the denominators of the multipoint Padé approximants to F are polynomials satisfying

non-Hermitian orthogonality relations with varying complex measures dλ/v2n.

The following theorem describes the zero distribution of the polynomials qn satisfying (15).

Let us stress that, in general, such polynomials need not be unique up to a multiplicative

constant nor have exact degree n. In the theorem below, it is understood that qn is any

sequence of such polynomials and that their counting measures are normalized by 1/n so

that they may no longer be probability measures. This is of no importance since the defect

n − deg(qn) is uniformly bounded as will be shown later.

Theorem 2.5. Let {qn}n∈N be a sequence of polynomials of degree at most n satisfying

weighted orthogonality relations (15), where {v2n}n∈N is the sequence of monic polynomials

associated via (6) to some admissible interpolation scheme A with asymptotic distribution σ and

where λ ∈ BVT. Then the counting measures νn of the zeros of qn(z) =
∏

(z − ξj,n), namely

νn := (1/n)
∑
δξj,n , converge in the weak∗ sense to σ̂, the balayage of σ onto S = supp(λ).

By virtue of the results in the PhD thesis of R. Küstner [18], a generalization of the previous

theorem can be proved when the measure λ, instead of belonging to BVT, has an argument

of bounded variation and satisfies the so-called Λ-criterion introduced in [33, Sec. 4.2]:

cap

({
t ∈ S : lim sup

r→0

Log(1/µ[t − r, t + r ])

Log(1/r)
< +∞

})
= cap(S).

However, this assumption would make the exposition heavier and we leave it to the interested

reader to carry out the details.

3. Proofs

We start by stating several auxiliary results that are crucial for the proof of Theorem 2.5.

Lemma ([6, Lem. 3.2]) Let ν be a positive measure which has infinitely many points in

its support and assume the latter is covered by finitely many disjoint intervals: supp(ν) ⊆
∪mj=1[aj , bj ]. Let further ψ be a function of bounded variation on supp(ν). If the polynomial

ul(z) =
∏dl
j=1(z − ξj), dl ≤ l , satisfies∫

tkul(t)e
iψ(t)dν(t) = 0, k = 0, . . . , l − 1,

then
dl∑
j=1

(π − θ(ξj)) + (l − dl)π ≤
m∑
j=1

V (ψ, [aj , bj ]) + (m − 1)π,

where θ(·) is the angle function defined in (10) for a system of intervals ∪mj=1[aj , bj ].

As a consequence of this lemma, we get the following.
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Lemma 3.1. Let qn(z) =
∏dn
j=1(z − ξj,n) be an n-th orthogonal polynomial in the sense of

(15), where λ ∈ BVT and the polynomials v2n are associated to an admissible interpolation

scheme A. Then

(16)

dn∑
j=1

(π − θ(ξj,n)) + (n − dn)π ≤ V (ϕ) + VA +
∑
η∈S′

m(η)θ(η) + (m + s − 1)π,

where VA was defined in (7) and θ(·) is the angle function defined in (10) for a system of

intervals Im := ∪mj=1[aj , bj ] that covers S with I = [a1, bm] being the convex hull of S.

Proof: Denote by ψn(t) an argument function for e iϕ(t)Qs(t)qn(t)/v2n(t) on I, say

ψn(t) = ϕ(t)− arg(v2n(t)) +
∑
η∈S′

m(η)Arg(t − η) +

dn∑
i=1

Arg(t − ξi ,n).

It is easy to see that ψn is of bounded variation. Further, set l = n − s,

ψ = ψn, and, dν(t) =

∣∣∣∣Qs(t)qn(t)

v2n(t)

∣∣∣∣ d |λ|(t).
Then it follows from orthogonality relations (15) that∫

tke iψ(t)dν(t) = 0, k = 0, . . . , n − s − 1.

Thus, the previous lemma, applied with ul ≡ 1, implies that

m∑
j=1

V (ψn, [aj , bj ]) ≥ (n − s −m + 1)π.

So, we are left to show that

m∑
j=1

V (ψn, [aj , bj ]) ≤ V (ϕ) + VA +
∑
η∈S′

m(η)θ(η) +

dn∑
i=1

θ(ξi ,n).

By the definition of ψn, we have

m∑
j=1

V (ψn, [aj , bj ]) ≤
m∑
j=1

V (ϕ, [aj , bj ]) +

m∑
j=1

V (arg(v2n), [aj , bj ])

+

m∑
j=1

∑
η∈S′

m(η)V (Arg(· − η), [aj , bj ])

+

m∑
j=1

dn∑
i=1

V (Arg(· − ξi ,n), [aj , bj ]).

The assertion of the lemma now follows from the fact that, by monotonicity,

V (Arg(· − ξ), [a, b]) = Angle(ξ, [a, b]).

Finally, we state the last two technical observation.

Lemma 3.2. With the previous notation the following statements hold true
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(a) Let ψ be a real function of bounded variation on an interval [a, b] and Q a polynomial.

Then there exists a polynomial T 6= 0 and a constant β ∈ (0, π/32) such that

(17)
∣∣∣Arg

(
e iψ(x)Q(x)T (x)

)∣∣∣ ≤ π/2− 2β

for all x ∈ [a, b] such that T (x)Q(x) 6= 0.

(b) Assume that the polynomials v2n are associated to an admissible interpolation scheme.

Then for every ε > 0 there exists an integer l and a polynomial Tl ,n of degree at most

l satisfying: ∣∣∣∣ v2n(x)

|v2n(x)| − Tl ,n(x)

∣∣∣∣ < ε, x ∈ I,

for all n large enough. In particular, the argument of Tl ,n/v2n lies in the interval

(−2ε, 2ε) for such n.

Proof: (a) When Q ≡ 1 this is exactly the statement of Lemma 3.4 in [6] and since

ψ(x) + Arg(Q(x)) is still a real function of bounded variation on I, (17) follows.

(b) This claim follows from Jackson’s theorem [13, Thm. 6.2] since the derivatives of v2n/|v2n|
are uniformly bounded on I.

Note that Lemma 3.1, applied with m = 1, implies that the defect n− dn is bounded above

independently of n.

Corollary 3.3. Let U be a neighborhood of S. Then there exists a constant kU ∈ N such that

each qn has at most kU zeros outside of U for n large enough.

Proof: Since U is open, its intersection with (−1, 1) is a countable union of intervals. By

compactness, a finite number of them will cover S, say ∪mj=1(aj , bj). Apply Lemma 3.1 to the

closure of these intervals intersected with I and observe that any zero of qn which lies outside

of U will contribute to the left-hand side of (16) by more than some positive fixed constant

which depends only on U. Since the right-hand side of (16) does not depend on n and is finite

we can have only finitely many such zeros.

Proof of Theorem 2.5: Observe that we may suppose A is contained in a compact set. Indeed,

if this is not the case, we can pick a real number x0 /∈ K(A) ∪ S′ ∪ I and consider the analytic

automorphism of C given by Mx0 (z) := 1/(z − x0), with inverse M−1
x0

(τ) = x0 + 1/τ . If we

put A]n := Mx0 (An), then A] = {A]n} is an admissible interpolation scheme having asymptotic

distribution σ], with σ](B) = σ(M−1
x0

(B)) for any Borel set B ⊂ C. Moreover, the choice of

x0 yields that K(A]) is compact. Now, if we let

`n(τ) = τnqn
(
M−1
x0

(τ)
)
,

Ls(τ) = τ sQs
(
M−1
x0

(τ)
)
,

P ]n−s−1(τ) = τn−s−1Pn−s−1

(
M−1
x0

(τ)
)
,

v ]2n(τ) = τ2nv2n

(
M−1
x0

(τ)
)
,

then `n is a polynomial of degree n with zeros at Mx0 (ξj,n), j = 1, . . . , dn, and a zero at the

origin with multiplicity n− dn. In addition, v ]2n is a polynomial with a zero at each point of A]n,

counting multiplicity. Thus, up to a multiplicative constant, v ]2n is the polynomial associated

with A]n via (6). Analogously, Ls is a polynomial of degree s with a zero of multiplicity m(η)
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at Mx0 (η), η ∈ S′, and P ]n−s−1 is an arbitrary polynomial of degree at most n− s − 1. Making

the substitution t = M−1
x0

(τ) in (15), we get∫
Mx0 (S)

P ]n−s−1(τ)Ls(τ)`n(τ)
dλ](τ)

v ]2n(τ)
= 0, P ]n−s−1 ∈ Pn−s−1,

where dλ](τ) = τdλ
(
M−1
x0

(τ)
)

is a complex measure with compact support Mx0 (S) ⊂ R,

having an argument of bounded variation and total variation measure |λ]| ∈ BVT. Note that

τ is bounded away from zero on supp(λ]), since S is compact and therefore bounded away

from infinity. Now, since Lemma 3.1 implies that n − dn is uniformly bounded above, the

asymptotic distribution of the counting measures of zeros of `n is the same as the asymptotic

distribution of the images of the counting measures of zeros of qn under the map Mx0 . As

the counting measures of the points in A]n converge weak∗ to σ], it is enough to show that

counting measures of zeros of `n converge to σ̂], since the balayage is preserved under Mx0

(e.g. because harmonic functions are, cf. equation (A.61) in the appendix)4. Hence we assume

in the rest of the proof that A is contained in a compact set, say K0, which is disjoint from S̃

by the definition of admissibility.

Now, let Γ be a closed Jordan arc such that the bounded component of C \ Γ , say D,

contains S̃ while the unbounded component contains K0. Then qn = qn,1 · qn,2, where

(18) qn,1(z) =
∏
ξj,n∈D

(z − ξj,n) and qn,2(z) =
∏
ξj,n /∈D

(z − ξj,n).

Corollary 3.3 assures that degrees of polynomials qn,2 are uniformly bounded with respect to

n, therefore the asymptotic distribution of the zeros of qn,1 coincides with that of qn. Denote

by νn,1 the zero counting measure of qn,1 normalized with 1/n. Since all νn,1 are supported

on a fixed compact set, Helly’s selection theorem and Corollary 3.3 yield the existence of a

subsequence N1 such that νn,1
∗→ ν for n ∈ N1 and some Borel probability measure ν supported

on S; remember the defect n − deg(qn,1) is uniformly bounded which is why ν is a probability

measure in spite of the normalization of qn,1 with 1/n.

Next, we observe it is enough to show that the logarithmic potential of ν − σ is constant

q.e. on S. Indeed, since supp(σ) is disjoint from S and subsequently U−σ is harmonic on S,

Uν is bounded q.e. on S under this assumption. Hence, by lower semi-continuity of potentials,

Uν is bounded everywhere on S and therefore ν has finite energy. The latter is sufficient for ν

to be C-absolutely continuous5. Moreover, we also get in this case that Uν−bσ is constant q.e.

on S by (A.60) and, of course, σ̂ is also C-absolutely continuous. Thus, ν = σ̂ by the second

unicity theorem [30, Thm. II.4.6].

Now suppose that Uν−σ is a constant q.e. on S. Then there exist nonpolar Borel subsets

of S, say E− and E+, and two constants d and τ > 0 such that

Uν−σ(x) ≥ d + τ, x ∈ E+, Uν−σ(x) ≤ d − 2τ, x ∈ E−.
Then we claim that there exists y0 ∈ supp(ν) such that

(19) Uν−σ(y0) > d.

Indeed, otherwise we would have that

(20) Uν(x) ≤ Uσ(x) + d, x ∈ supp(ν).

4Here we somewhat abuse the notation and use the symbol b· to denote the balayage onto Mx0 (S), while in

the rest of the text it always stands for the balayage onto S.
5A Borel measure µ is called C-absolutely continuous if µ(E) = 0 for any Borel polar set.
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Then the principle of domination [30, Thm. II.3.2] would yield that (20) is true for all z ∈ C,

but this would contradict the existence of E+.

Since K(A) is contained in the complement of D, the sequence of potentials {Uσn}n∈N1

converges to Uσ locally uniformly in D. This implies that for any given sequence of points

{yn} ⊂ D such that yn → y0 as n →∞, n ∈ N1, we have

(21) lim
n→∞, n∈N1

Uσn(yn) = Uσ(y0).

On the other hand, by applying the principle of descent [30, Thm. I.6.8] for the above sequence

{yn}, we obtain

(22) lim inf
n→∞, n∈N1

Uνn,1 (yn) ≥ Uν(y0).

Combining (19), (21), and (22) we get

(23) lim inf
n→∞ n∈N1

Uνn,1−σn(yn) ≥ Uν−σ(y0) > d.

Since {yn} was an arbitrary sequence in D converging to y0, we deduce from (23) that there

exists ρ > 0 such that, for any y ∈ [y0 − 2ρ, y0 + 2ρ] and n ∈ N1 large enough, the following

inequality holds

(24) Uνn,1−σn(y) ≥ d.

Clearly

(25) Uνn,1−σn(y) =
1

2n
log

∣∣∣∣ v2n(y)

q2
n,1(y)

∣∣∣∣ ,
and therefore inequality (24) can be rewritten as∣∣∣∣q2

n,1(y)

v2n(y)

∣∣∣∣ ≤ e−2nd , y ∈ [y0 − 2ρ, y0 + 2ρ].

for all n ∈ N1 large enough. We also remark that the same bound holds if {qn,1} is replaced

by a sequence of monic polynomials, say {un}, of respective degrees n+ o(n), whose counting

measures normalized by 1/n have asymptotic distribution ν. Moreover, in this case

(26)

∣∣∣∣qn,1(y)un(y)

v2n(y)

∣∣∣∣ ≤ e−2nd

for any y ∈ [y0 − 2ρ, y0 + 2ρ] and all n ∈ N1 large enough.

In another connection, since Uν−σ(x) ≤ d−2τ on E−, applying the lower envelope theorem

[30, Thm. I.6.9] we get

(27) lim inf
n→∞, n∈N1

Uνn,1−σn(x) = Uν−σ(x) ≤ d − 2τ, for q.e. x ∈ E−.

Let Z be a finite system of points from I, to be specified later, and denote for simplicity

bn(z) = q2
n,1(z)/v2n(z).

Then by [2, 3] there exists S0 ⊂ S such that S0 is regular, cap(E−∩S0) > 0 and dist(Z,S0) > 0,

where dist(Z,S0) := minz∈Z dist(z, S0). Thus, there exists x ∈ E− ∩ S0 such that

|bn(x)| ≥ e−2n(d−τ), n ∈ N2 ⊂ N1,

by (25) and (27). Let xn be a point where |bn| attains its maximum on S0, i.e.

(28) Mn := ‖bn‖S0 = |bn(xn)| ≥ e−2n(d−τ).
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Since v2n has no zeros in D, the function log |bn| is subharmonic there. Thus, the two-constant

theorem [29, Thm. 4.3.7] on D \ S0 yields

log |bn(z)| ≤ log(Mn) ωD\S0
(z, S0) + 2n log

(
d(D)

dist(Γ,K0)

)
(1− ωD\S0

(z, S0)),

z ∈ D, where ωD\S0
is the harmonic measure on D \ S0, d(D) := max{diam(D), 1}, and

diam(D) := maxx,y∈D |x − y |. Then we get from (28) that

|bn(z)| ≤ Mn

(
1

Mn

)1−ωD\S0
(z,S0)(

d(D)

dist(Γ,K0)

)2n(1−ωD\S0
(z,S0))

≤ Mn exp
{

2n∆(1− ωD\S0
(z, S0))

}
, z ∈ D,(29)

where

∆ := d − τ + log(d(D)/dist(Γ,K0)).

Note that ∆ is necessarily positive otherwise bn would be constant in D by the maximum

principle, which is absurd. Moreover, by the regularity of S0, it is known ([29, Thm. 4.3.4])

that for any x ∈ S0

lim
z→x

ωD(z, S0) = 1

uniformly with respect to x ∈ S0. Thus, for any δ > 0 there exists r(δ) < dist(S0, Γ ) such

that for z satisfying dist(z, S0) ≤ r(δ) we have

1− ωD\S0
(z, S0) ≤ δ/∆.

This, together with (29), implies that for fixed δ, to be adjusted later, we have

|bn(z)| ≤ Mne
2nδ, |z − xn| ≤ r(δ).

Note that bn is analytic in D, which, in particular, yields

b′n(z) =
1

2πi

∫
|ξ−xn |=r(δ)

bn(ξ)

(ξ − z)2
dξ, |z − xn| < r(δ).

Thus, for any z such that |z − xn| ≤ r(δ)/2 we get

|b′n(z)| ≤
1

2π
·

4Mne
2nδ

r2(δ)
· 2πr(δ) =

4Mne
2nδ

r(δ)
.

Now, for any x such that

(30) |x − xn| ≤
r(δ)

8e2nδ

the mean value theorem yields

|bn(x)− bn(xn)| ≤
4Mne

2nδ

r(δ)
|x − xn| ≤

Mn

2
.

Thus, for x satisfying (30) and n ∈ N2 we have

|bn(x)| ≥ |bn(xn)| − |bn(x)− bn(xn)| ≥ Mn −
Mn

2
=
Mn

2

and by (28) and the definition of bn,

(31)

∣∣∣∣q2
n,1(x)

v2n(x)

∣∣∣∣ ≥ 1

2
e−2n(d−τ), n ∈ N2.
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Now, Lemma 3.2(a) guarantees that there exist a polynomial T of degree, say k , and a

number β ∈ (0, π/32) such that∣∣∣Arg
(
e iϕ(t)Qs(t)T (t)

)∣∣∣ ≤ π

2
− 2β,

for all t ∈ I such that (TQs)(t) 6= 0, where ϕ is as in (2). Moreover, for each n ∈ N2, we

choose Tl ,n as in Lemma 3.2(b) with ε = δ/3. Since all Tl ,n are bounded on I by definition and

have respective degrees at most l , which does not depend on n, there exists N3 ⊂ N2 such that

sequence {Tl ,n}n∈N3 converges uniformly to some polynomial Tl on I. In particular, we have

that deg(Tl) ≤ l and the argument of Tl/v2n lies in (−δ, δ) for n ∈ N3 large enough. Denote

by 2α the smallest even integer strictly greater than l + k + s. As soon as n is large enough,

since y0 ∈ supp(ν), there exist β1,n, . . . , β2α,n, zeros of qn,1, lying in

{z ∈ C : dist (z, [y0 − ρ, y0 + ρ]) ≤ ρ} ,

such that∣∣∣∣∣∣
2α∑
j=1

Arg

(
1

x − β̄j,n

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
2α∑
j=1

Arg
(
x − β̄j,n

)∣∣∣∣∣∣ ≤ β, x ∈ R \ [y0 − 2ρ, y0 + 2ρ].

Define for n ∈ N3 sufficiently large

P ∗n (z) =
qn(z)T (z)Tl(z)∏2α

j=1(z − βj,n)
.

Then∣∣∣∣Arg

(
(P ∗nQsqn)(x)e iϕ(x)

v2n(x)

)∣∣∣∣ =

∣∣∣∣∣∣Arg

|qn(x)|2
2α∏
j=1

1

(x − β̄j,n)

Tl(x)

v2n(x)
(TQs)(x)e iϕ(x)

∣∣∣∣∣∣
≤ π/2− δ,

for all x ∈ I \ [y0 − 2ρ, y0 + 2ρ] except if T (x)Qs(x) = 0, where δ is chosen so small that

δ < β/2. This means that for such x

Re

(
(P ∗nQsqn)(x)e iϕ(x)

v2n(x)

)
≥ sin δ

∣∣∣∣(P ∗nQsqn)(x)e iϕ(x)

v2n(x)

∣∣∣∣
= sin δ

∣∣∣∣∣q2
n(x)Qs(x)T (x)Tl(x)

v2n(x)
∏2α
j=1(x − β̄j,n)

∣∣∣∣∣ .(32)

Now, denote by mn,1 the number of zeros of qn,2 (defined in (18)) of modulus at least

2 maxx∈S |x |, and put αn for the inverse of their product. Let mn,2 := deg(qn,2) − mn,1.

Then for x ∈ S we have

(33) (dist(S, Γ ))mn,2 (1/2)mn,1 ≤ |αnqn,2(x)| ≤
(

3 max
t∈S
|t|
)mn,2

(3/2)mn,1 ,

and since mn,1 + mn,2 = deg(qn,2) is uniformly bounded with n, so is {|αnqn,2|} from above

and below on S.
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Finally, if x ∈ S\[y0−2ρ, y0 +2ρ] satisfies (30), then by (31) the quantity in (32) is bounded

below by

|T (x)Qs(x)|
sin δ minx∈I |Tl(x)| minx∈I |qn,2(x)|2

2(diam(S) + 2ρ)2α
e−2nd+2nτ

=
c1

|α2
n|
|T (x)Qs(x)|e−2nd+2nτ ,

where

c1 :=
sin δ minx∈I |Tl(x)| minx∈I |αnqn,2(x)|2

2(diam(S) + 2ρ)2α
> 0

by construction of Tl and (33). Thus,

Re

(∫
S\[y0−2ρ,y0+2ρ]

|αn|2P ∗n (t)Qs(t)qn(t)
e iϕ(t)

v2n(t)
d |λ|(t)

)
≥ sin δ

∫
S\[y0−2ρ,y0+2ρ]

∣∣∣∣α2
nP
∗
n (t)Qs(t)qn(t)

e iϕ(t)

v2n(t)

∣∣∣∣ d |λ|(t)
≥ c1e

−2nd+2nτ

∫
S∩In
|T (t)Qs(t)|d |λ|(t) ≥ c2e

−2nd+2n(τ−Lδ),(34)

where In is the interval defined by (30). The last inequality is true by the following argument.

Recall that xn, the middle point of In, belongs to S0, where dist(S0, Z) > 0 and Z is a finite

system of points that we choose now to be the zeros of TQs on I, if any. Then TQs , which is

independent of n, is uniformly bounded below on In for all n large enough and (34) follows from

this, the second requirement in the definition of BVT, and the fact that In and [y0−2ρ, y0 +2ρ]

are disjoint for all n large enough. The latter is immediate if (26) and (31) are compared.

On the other hand, (26), applied with un = P ∗n (z)/qn,2(z̄), and (33) yield that

(35)

∣∣∣∣∫
[y0−2ρ,y0+2ρ]

|αn|2P ∗n (t)Qs(t)qn(t)
e iϕ(t)

v2n(t)
d |λ|(t)

∣∣∣∣ ≤ c3e
−2nd .

This completes the proof, since δ can be taken such that τ −Lδ > 0 and this would contradict

orthogonality relations (15) because, for n large enough, the integral in (34) is much bigger

than in (35).

Proof of Theorem 2.1: This theorem follows immediately from Theorem 2.5 and the con-

siderations leading to (15).

Before we prove Theorem 2.3 we shall need one auxiliary lemma.

Lemma 3.4. Let D be a domain in C with non-polar boundary, K′ be a compact set in D, and

{un} be a sequence of subharmonic functions in D such that

un(z) ≤ M − εn, z ∈ D,

for some constant M and a sequence {εn} of positive numbers decaying to zero. Further,

assume that there exist a compact set K′ and positive constants ε′ and δ′, independent of n,

for which holds

un(z) ≤ M − ε′, z ∈ Kn ⊂ K′, cap(Kn) ≥ δ′.
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Then for any compact set K ⊂ D \K′ there exists a positive constant ε(K) such that

un(z) ≤ M − ε(K), z ∈ K,

for all n large enough.

Proof: Let ωn be the harmonic measure for Dn := D \Kn. Then the two-constant theorem

[29, Thm. 4.3.7] yields that

un(z) ≤ (M − ε′)ωn(z,Kn) + (M − εn)(1− ωn(z,Kn))

≤ M − (ε′ − εn)ωn(z,Kn), z ∈ Dn.

Thus, we need to show that for any K ⊂ D \K′ there exists a constant δ(K) > 0 such that

ωn(z,Kn) ≥ δ(K), z ∈ K.

Assume to the contrary that there exists a sequence of points {zn}n∈N1 ⊂ K, N1 ⊂ N, such

that

(36) ωn(zn, Kn)→ 0 as n →∞, n ∈ N1.

By [29, Theorem 4.3.4], ωn(·, Kn) is the unique bounded harmonic function in Dn such that

lim
z→ζ

ω(z,Kn) = 1Kn(ζ)

for any regular ζ ∈ ∂Dn, where 1Kn is the characteristic function of ∂Kn. Then it follows from

(A.63) of the appendix that

(37) cap(Kn, ∂D)U
µ(Kn,∂D)

D ≡ ωn(·, Kn),

where µ(Kn,∂D) is the Green equilibrium measure on K relative to D. Since all the measures

µ(Kn,∂D) are supported in the compact set K′, there exists a probability measure µ such that

µ(Kn,∂D)
∗→ µ as n →∞, n ∈ N2 ⊂ N1.

Without loss of generality we may suppose that zn → z∗ ∈ K as n →∞, n ∈ N2. Let, as usual,

gD(·, t) be the Green function for D with pole at t ∈ D. Then, by the uniform equicontinuity

of {gD(·, t)}t∈K′ on K, we get

U
µ(Kn,∂D)

D (zn)→ UµD(z∗) 6= 0 as n →∞, n ∈ N2.

Therefore, (36) and (37) necessarily mean that

(38) cap(Kn, ∂D)→ 0 as n →∞, n ∈ N2.

By definition, 1/cap(Kn, ∂D) is the minimum among Green energies of probability measures

supported on Kn. Thus, the sequence of Green energies of the logarithmic equilibrium measures

on Kn, µKn , diverges to infinity by (38). Moreover, since

{g(·, t) + log | · −t|}t∈K′
is a family of harmonic functions in D whose moduli are uniformly bounded above on K′, the

logarithmic energies of µKn diverge to infinity. In other words,

cap(Kn)→ 0 as n →∞, n ∈ N2,

which is impossible by the initial assumptions. This proves the lemma.

Proof of Theorem 2.3: Exactly as in the proof of Theorem 2.5 we can suppose that all the

interpolation points are contained in some compact set K0 disjoint from S̃. By virtue of the
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Hermite interpolation formula ( cf. [33, Lemma 6.1.2, (1.23)]), the error en := F − Πn has

the following representation

(39) en(z) =
v2n(z)

(pn−sQsqn)(z)

∫
(pn−sQsqn)(t)

v2n(t)

dλ(t)

z − t , z ∈ C \ S,

where pn−s is an arbitrary polynomials in Pn−s . Since almost all of the zeros of qn approach

S by Corollary 3.3, we always can fix s of them, say ξ1,n, . . . , ξs,n, in such a manner that the

absolute value of

ls,n(z) :=

s∏
j=1

(z − ξj,n)

is uniformly bounded above and below on any given compact subset K ⊂ C \ S for all n large

enough (depending on K). In what follows we choose pn−s(z) := qn(z̄)/ls,n(z̄). Set also An
to be

An(z) :=

∫
(|p2

n−s |Qs ls,n)(t)

v2n(t)

dλ(t)

z − t , z ∈ C \ S.

First, we show that

(40) |An|1/2n cap→ exp{−c(σ,C \ S)}

on compact subsets of C \ S, where c(σ,C \ S) is defined in (A.60) of the appendix. Clearly,

for any compact set K ⊂ C \ S there exists a constant c(K), independent of n, such that

(41) |An(z)| ≤ c(K)

∥∥∥∥p2
n−s
v2n

∥∥∥∥
S

, z ∈ K.

Let νn and σn be the counting measures of zeros of p2
n−s and v2n, respectively. Then

lim sup
n→∞

∣∣∣∣p2
n−s(t)

v2n(t)

∣∣∣∣1/2n

= lim inf exp
{
Uσn−νn(t)

}
= exp

{
Uσ−bσ(t)

}
= exp{−c(σ;C \ S)} q.e. on S(42)

by Theorem 2.1, the lower envelope theorem [30, Thm. I.6.9], and (A.60) of the appendix.

Moreover, by the principle of descent [30, Thm. I.6.8], we get that

(43) lim sup
n→∞

∣∣∣∣p2
n−s(t)

v2n(t)

∣∣∣∣1/2n

≤ exp
{
Uσ−bσ(t)

}
= exp{−c(σ;C \ S)}

uniformly on S, where the last equality holds by the regularity of S. Now it is immediate from

(42) and (43) that

(44) lim
n→∞

∥∥∥∥p2
n−s
v2n

∥∥∥∥1/2n

S

= exp{−c(σ;C \ S)}.

Indeed, since the whole sequence {νn} converges to σ̂, (42) holds for any subsequence of N.

Thus, there cannot exist a subsequence of natural numbers for which the limit in (44) would

not hold. Suppose now that (40) is false. Then there would exist a compact set K′ ⊂ C \ S
and ε′ > 0 such that

(45) cap
{
z ∈ K′ :

∣∣∣|An(z)|1/2n − exp{−c(σ;C \ S)}
∣∣∣ ≥ ε′} 6→ 0.

Combining (45), (44), and (41) we see that there would exist a sequence of compact sets

Kn ⊂ K′, cap(Kn) ≥ δ′ > 0, such that

(46) |An(z)|1/2n ≤ exp{−c(σ;C \ S)} − ε′, z ∈ Kn.
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Now, let Γ be a closed Jordan curve that separates S from K0, a compact set containing all

the zeros of v2n, and K′. Assume further that S belongs to the bounded component of the

complement of Γ . Observe that (1/2n) log |An| is a subharmonic function in C \ S. Then by

(41), (44), and (46) enable us to apply Lemma 3.4 with M = −c(σ;C \ S) which yields that

there exists ε(Γ ) > 0 such that

(47) |An(z)|1/2n ≤ exp{−c(σ;C \ S)− ε(Γ )}

uniformly on Γ and for all n large enough. Define

Jn :=

∣∣∣∣∫
Γ

Tl(z)T (z)ls,n(z̄)An(z)
dz

2πi

∣∣∣∣ ,
where the polynomials Tl and T are chosen as in Theorem 2.1 (see discussion after (31)). We

get from (47) that

(48) lim sup
n→∞

J1/2n
n ≤ exp{−c(σ;C \ S)− ε(Γ )}.

In another connection, Fubini-Tonelli theorem and the Cauchy integral formula yield

Jn =

∣∣∣∣∫
Γ

Tl(z)T (z)ls,n(z̄)

(∫
(|p2

n−s |Qs ls,n)(t)

v2n(t)

dλ(t)

z − t

)
dz

2πi

∣∣∣∣
=

∣∣∣∣∫ |q2
n(t)|

Tl(t)

v2n(t)
(TQs)(t)e iϕ(t)d |λ|(t)

∣∣∣∣ .(49)

Exactly as in (32), we can write

(50) Re

(
(TlTQs)(t)e iϕ(t)

v2n(t)

)
≥ sin(δ)

∣∣∣∣(TlTQs)(t)

v2n(t)

∣∣∣∣ , t ∈ I,

where I is the convex hull of S and δ > 0 has the same meaning as in the proof of Theorem

2.1 (see construction after (29)). Thus, we derive from (49) and (50) that

(51) Jn ≥ sin(δ)

∫
|bn(t)| |(TlTQs)(t)|d |λ|(t), bn := q2

n/v2n.

Let S0 be a closed subset of S of positive capacity that lies at positive distance from the zeros

of TQs on I (as in the proof of Theorem 2.1, we refer to [2, 3] for the existence of this set).

Further, let xn ∈ S0 be such that

‖bn‖S0 = |bn(xn)|.

Then it follows from (42) that

‖bn‖S0 ≥ exp{−2n(c(σ;C \ S) + ε)}

for any ε > 0 and all n large enough. Proceeding as in Theorem 2.1 (see equations (30) and

(31)), we get that

(52) |bn(t)| ≥
1

2
exp{−2n(c(σ;C \ S) + ε)}, t ∈ In,

where

In :=
{
x ∈ S0 : |x − xn| ≤ rδe−2nδ

}
and rδ is some function of δ continuous and vanishing at zero. Then by combining (51) and

(52), we obtain exactly as in (34) that there exists a constant c1 independent of n such that

Jn ≥ sin(δ)

∫
In

|bn(t)| |(TlTQs)(t)|d |λ|(t) ≥ c1 exp{−2n(c(σ;C \ S) + ε+ Lδ)}.
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Thus, we have that

(53) lim inf
n→∞

J1/2n
n ≥ exp{−c(σ;C \ S)− ε− Lδ}.

Now, by choosing ε and δ small enough that ε+Lδ < ε(Γ ), we arrive at contradiction between

(48) and (53). Therefore, the convergence in (40) holds.

Second, we show that

(54)

∣∣∣∣v2n(z)ls,n(z)

q2
n(z)Qs(z)

∣∣∣∣1/2n
cap→ exp

{
c(σ;C \ S)− UσC\S(z)

}
on compact subsets of C \ S. Let K ⊂ C \ S be compact and let U be a bounded open set

containing K and not intersecting S. Define

qn,1(z) :=
∏

ξ∈U: qn(ξ)=0

(z − ξ) and qn,2(z) := qn(z)/qn,1(z).

Corollary 3.3 yields that there exists fixed m ∈ N such that deg(qn,1) ≤ m. Then∣∣∣∣ v2n(z)

q2
n,2(z)

∣∣∣∣1/2n

→ exp
{
Ubσ−σ(z)

}
= exp

{
c(σ;C \ S)− UσC\S(z)

}
uniformly on K by Theorem 2.1, definition of v2n, and (A.62) of the appendix. Moreover, it

is an immediate consequence the choice of ls,n, the uniform boundedness of the degrees of

q2
n,1Qs , and [29, Thm. 5.2.5] (cap({z : |(q2

n,1Qs)(z)| ≤ ε}) = εdeg(q2
n,1Qs )) that∣∣∣∣ ls,n(z)

q2
n,1(z)Qs(z)

∣∣∣∣1/2n
cap→ 1, z ∈ K.

Thus, we obtain (54). It is clear now that (9) follows from (39), (40), and (54).

Proof of Theorem 2.4: Inequality (11) is trivial for any η ∈ S′∩S. Suppose now that η ∈ S′\S
and that m(η) < m(η). This would mean that there exists an open set U, U ∩ S̃ = {η}, such

that m(η, U) < m(η) and therefore would exist a subsequence N1 ⊂ N such that

#{Sn ∩ U} < m(η), n ∈ N1.

It was proved in Theorem 2.3 that {Πn} converges in capacity on compact subsets of C \ S
to F . Thus, {Πn}n∈N1 is a sequence of meromorphic (in fact, rational) functions in U with at

most m(η) poles there, which converges in capacity on U to a meromorphic function F |U with

exactly one pole of multiplicity m(η). Then by Gonchar’s lemma [14, Lemma 1] each Πn has

exactly m(η) poles in U and these poles converge to η. This finishes the proof of (11).

Now, for any η ∈ S′ \ S the upper characteristic m(η) is finite by Corollary 3.3. Therefore

there exist domains Dη, Dη ∩ S̃ = {η}, such that m(η) = m(η,Dη), η ∈ S′ \ S. Further,

let θ(·) be the angle function defined in (10) for a system of m intervals covering S and let

Sn = {ξ1,n, . . . , ξdn,n}. Then by Lemma 3.1 we have

(55)

dn∑
j=1

(π − θ(ξj,n)) + (n − dn)π ≤ V (ϕ) + VA + (m + s − 1)π +
∑
ζ∈S′

m(ζ)θ(ζ).

Then for n large enough (55) yields

∑
η∈S′\S

 ∑
ξj,n∈Dη

(π − θ(ξj,n))−m(η)(π − θ(η))

 ≤ V,
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where V was defined in (13). Thus,∑
η∈S′\S

(#{Sn ∩Dη} −m(η)) (π − θ(η)) ≤
∑
η∈S′\S

#{Sn ∩Dη}
(

max
ξ∈Dη

θ(ξ)− θ(η)

)
+V(56)

for all n large enough. However, since {maxn≥N #{Sn ∩Dη}}N∈N is a decreasing sequence of

integers, m(η) = m(η,Dη) = #{Sn ∩Dη} for infinitely many n ∈ N. Therefore, we get from

(56) that

(57)
∑
η∈S′\S

(m(η)−m(η)) (π − θ(η)) ≤ V +
∑
η∈S′\S

m(η)

(
max
ξ∈Dη

θ(ξ)− θ(η)

)
.

Observe now that the left-hand side and the first summand on the right-hand side of (57) are

simply constants. Moreover, the second summand on the right-hand side of (57) can be maid

arbitrarily small by taking smaller neighborhoods Dη. Thus, (12) follows.

4. Numerical Experiments

We restricted ourselves to the case of classical Padé approximants and we constructed their

denominators by solving the orthogonality relations (15) with v2n ≡ 1. Thus, finding these

denominators amounts to solving a system of linear equations whose coefficients are obtained

from the moments of the measure λ.

In the numerical experiments below we approximate function F given by the formula

F (z) = 7

∫
[−6/7,−1/8]

e itdt

z − t − (3 + i)

∫
[2/5,1/2]

t − 3/5

t − 2i

dt

z − t + (2− 4i)

∫
[2/3,7/8]

ln(t)dt

z − t

+
1

(z + 3/7− 4i/7)2
+

2

(z − 5/9− 3i/4)3
+

6

(z + 1/5 + 6i/7)4
.
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Figure 1. Poles of Π13 and the error |F − Π13| on T

On Figures 1a and 2a the solid lines stand for the support of the measure, diamonds depict

the polar singularities of F , and disks denote the poles of the corresponding approximants.

Note that the poles of F seem to attract the singularities first. On Figures 1b and 2b the

absolute value of the error on the unit circle is displayed for the corresponding approximants.
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Figure 2. Poles of Π20 the error |F − Π20| on T

The horizontal parts of the curves are of magnitude about 10−3 on Figure 1b and of magnitude

about 10−9 on Figure 2b.

5. Appendix

Below we sketch some basic notions of logarithmic potential theory that were used through-

out the paper. We refer the reader to the monographs [29, 30] for a complete treatment.

The logarithmic potential and the logarithmic energy of a finite positive measure µ, com-

pactly supported in C, are defined by

(A.58) Uµ(z) :=

∫
log

1

|z − t|dµ(t), z ∈ C,

and

(A.59) I[µ] :=

∫
Uµ(z)dµ(z) =

∫ ∫
log

1

|z − t|dµ(t)dµ(z),

respectively. The function Uµ is superharmonic with values in (−∞,+∞], and is not identically

+∞. It is bounded below on supp(µ) so that I[µ] ∈ (−∞,+∞].

Let now E ⊂ C be compact and Λ(E) denote the set of all probability measures supported

on E. If the logarithmic energy of every measure in Λ(E) is infinite, we say that E is polar.

Otherwise, there exists a unique µE ∈ Λ(E) that minimizes the logarithmic energy over all

measures in Λ(E). This measure is called the equilibrium distribution on E. The logarithmic

capacity, or simply the capacity, of E is defined as

cap(E) = exp{−I[µE ]}.

By definition, the capacity of an arbitrary subset of C is the supremum of the capacities of its

compact subsets. We agree that the capacity of a polar set is zero. We define convergence

in capacity as follows. We say that a sequence of functions {hn} converges in capacity to a

function h on a compact set K if for any ε > 0 holds

cap ({z ∈ K : |(hn − h)(z)| ≥ ε})→ 0 as n →∞.

We also say that a sequence converges in capacity in an open set Ω if it is converges in capacity

on any compact subset of Ω.
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Another important concept is the regularity of a compact set. We restrict to the case when

E has connected complement, say Ω. Then E is called regular if the Dirichlet problem on ∂Ω

is solvable, in other words, if any continuous function on ∂Ω is the trace (limiting boundary

values) of some function harmonic in Ω. Thus, regularity is a property of ∂Ω rather than E

itself. It is also known [30, pg. 54] that E is regular if and only if UµE is continuous6 in C.

Often we use the concept of balayage of a measure [30, Sec. II.4]. Let D be a domain

(connected open set) with compact boundary ∂D whose complement has positive capacity,

and µ be a finite Borel measure with compact support in D. Then there exists a unique Borel

measure µ̂ supported on ∂D, with total mass is equal to that of µ, whose potential Ubµ is

bounded on ∂D and satisfies for some constant c(µ;D)

(A.60) Ubµ(z) = Uµ(z) + c(µ;D) for q.e. z ∈ C \D.

Necessarily then, we have that c(µ;D) = 0 if D is bounded and c(µ;D) =
∫
gD(t,∞)dµ(t)

otherwise, where gD(·,∞) is the Green function for D with pole at infinity. Equality in (A.60)

holds for all z ∈ C \ D and also at all regular points of ∂D. The measure µ̂ is called the

balayage of µ onto ∂D.It has the property that

(A.61)

∫
h dµ =

∫
h dµ̂

for any function h which is harmonic in D and continuous in D (including at infinity if D is

unbounded). From its defining properties µ̂ has finite energy, therefore it cannot charge polar

sets.

In analogy to the logarithmic case, one can define the Green potential of a positive measure

µ supported in a domain D with compact non-polar boundary. The only difference is now that,

in (A.58), the logarithmic kernel log(1/|z − t|) gets replaced by gD(z, t), the Green function

for D with pole at t ∈ D. The Green potential relative to the domain D of a finite positive

Borel measure µ compactly supported in D is given by

UµD(z) =

∫
gD(z, t) dµ(t).

It can be re-expressed in terms of the logarithmic potentials of µ and of its balayage µ̂ onto

∂D by the following formula [30, Thm. II.4.7 and Thm. II.5.1]:

(A.62) Ubµ−µ(z) = c(µ;D)− UµD(z), z ∈ D,

where c(µ;D) was defined after equation (A.60). Moreover, (A.62) continues to hold at every

regular point of ∂D; in particular, it holds q.e. on ∂D.

Exactly as in the logarithmic case, if E is a compact nonpolar subset of D, there exists a

unique measure µ(E,∂D) ∈ Λ(E) that minimizes the Green energy among all measures in Λ(E).

This measure is called the Green equilibrium distribution on E relative to D. In addition, the

Green equilibrium distribution satisfies

(A.63) U
µ(E,∂D)

D (z) =
1

cap(E, ∂D)
, for q.e. z ∈ E,

where cap(E, ∂D) is Green (condenser) capacity of E relative to D which is the reciprocal of

the minimal Green energy among all measures in Λ(E). Moreover, equality in (A.63) holds at

all regular points of E.

6Since supp(µE) ⊆ ∂Ω [30, Cor. I.4.5], it is again enough to check continuity of UµE only on ∂Ω.
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Sb., 98(140):564–577, 1975. English transl. in Math. USSR Sb. 27:503–514, 1975.
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[20] G. López Lagomasino. Convergence of Padé approximants of Stieltjes type meromorphic functions and

comparative asymptotics for orthogonal polynomials. Mat. Sb., 136(178):206–226, 1988. English transl.

in Math. USSR Sb. 64:207–227, 1989.
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